BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21035658)

  • 1. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.
    Li Y; Zhang Q; Li J
    Talanta; 2010 Nov; 83(1):162-6. PubMed ID: 21035658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode.
    George S; Lee HK
    J Phys Chem B; 2009 Nov; 113(47):15445-54. PubMed ID: 19883043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrochemistry and electrocatalytic properties of hemoglobin immobilized on a carbon ionic liquid electrode modified with mesoporous molecular sieve MCM-41.
    Li Y; Zeng X; Liu X; Liu X; Wei W; Luo S
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):241-5. PubMed ID: 20430597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix.
    Ma W; Tian D
    Bioelectrochemistry; 2010 Jun; 78(2):106-12. PubMed ID: 19758846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry of hemoglobin in gold nanowire array.
    Yang M; Qu F; Li Y; He Y; Shen G; Yu R
    Biosens Bioelectron; 2007 Oct; 23(3):414-20. PubMed ID: 17582754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry and electrocatalytic of hemoglobin immobilized on FDU-15-Pt mesoporous materials.
    Nie D; Liang Y; Zhou T; Li X; Shi G; Jin L
    Bioelectrochemistry; 2010 Oct; 79(2):248-53. PubMed ID: 20064750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode.
    Xu J; Li W; Yin Q; Zhong H; Zhu Y; Jin L
    J Colloid Interface Sci; 2007 Nov; 315(1):170-6. PubMed ID: 17681509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.
    Sun W; Cao L; Deng Y; Gong S; Shi F; Li G; Sun Z
    Anal Chim Acta; 2013 Jun; 781():41-7. PubMed ID: 23684463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film.
    Zheng N; Zhou X; Yang W; Li X; Yuan Z
    Talanta; 2009 Aug; 79(3):780-6. PubMed ID: 19576445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film.
    Wang Q; Lu G; Yang B
    Biosens Bioelectron; 2004 May; 19(10):1269-75. PubMed ID: 15046759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors.
    Lu X; Zhang H; Ni Y; Zhang Q; Chen J
    Biosens Bioelectron; 2008 Sep; 24(1):93-8. PubMed ID: 18457944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies.
    Dong S; Zhang P; Liu H; Li N; Huang T
    Biosens Bioelectron; 2011 Jun; 26(10):4082-7. PubMed ID: 21531542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Zeng X; Wei W; Li X; Zeng J; Wu L
    Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition.
    Shi G; Sun Z; Liu M; Zhang L; Liu Y; Qu Y; Jin L
    Anal Chem; 2007 May; 79(10):3581-8. PubMed ID: 17437331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biophys Chem; 2007 Feb; 125(2-3):540-8. PubMed ID: 17166647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film.
    Xu H; Dai H; Chen G
    Talanta; 2010 Apr; 81(1-2):334-8. PubMed ID: 20188928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode.
    Sun W; Qin P; Zhao R; Jiao K
    Talanta; 2010 Mar; 80(5):2177-81. PubMed ID: 20152469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode.
    Sun W; Zhai Z; Wang D; Liu S; Jiao K
    Bioelectrochemistry; 2009 Feb; 74(2):295-300. PubMed ID: 19059815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.