These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21035732)
1. Polyketide β-branching in bryostatin biosynthesis: identification of surrogate acetyl-ACP donors for BryR, an HMG-ACP synthase. Buchholz TJ; Rath CM; Lopanik NB; Gardner NP; Håkansson K; Sherman DH Chem Biol; 2010 Oct; 17(10):1092-100. PubMed ID: 21035732 [TBL] [Abstract][Full Text] [Related]
2. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. Maloney FP; Gerwick L; Gerwick WH; Sherman DH; Smith JL Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10316-21. PubMed ID: 27573844 [TBL] [Abstract][Full Text] [Related]
4. Chemoenzymatic Dissection of Polyketide β-Branching in the Bryostatin Pathway. Slocum ST; Lowell AN; Tripathi A; Shende VV; Smith JL; Sherman DH Methods Enzymol; 2018; 604():207-236. PubMed ID: 29779653 [TBL] [Abstract][Full Text] [Related]
5. In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont. Lopanik NB; Shields JA; Buchholz TJ; Rath CM; Hothersall J; Haygood MG; Håkansson K; Thomas CM; Sherman DH Chem Biol; 2008 Nov; 15(11):1175-86. PubMed ID: 19022178 [TBL] [Abstract][Full Text] [Related]
6. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Florova G; Kazanina G; Reynolds KA Biochemistry; 2002 Aug; 41(33):10462-71. PubMed ID: 12173933 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. Sirinupong N; Suwanmanee P; Doolittle RF; Suvachitanont W Planta; 2005 Jun; 221(4):502-12. PubMed ID: 15744497 [TBL] [Abstract][Full Text] [Related]
8. Overexpression and Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA Synthase Affect Central Metabolic Pathways in Tobacco. Liao P; Lung SC; Chan WL; Hu M; Kong GK; Bach TJ; Hao Q; Lo C; Chye ML Plant Cell Physiol; 2021 Mar; 62(1):205-218. PubMed ID: 33340324 [TBL] [Abstract][Full Text] [Related]
9. Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Nagegowda DA; Bach TJ; Chye ML Biochem J; 2004 Nov; 383(Pt. 3):517-27. PubMed ID: 15233626 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic assembly of epothilones: the EpoC subunit and reconstitution of the EpoA-ACP/B/C polyketide and nonribosomal peptide interfaces. O'Connor SE; Chen H; Walsh CT Biochemistry; 2002 Apr; 41(17):5685-94. PubMed ID: 11969430 [TBL] [Abstract][Full Text] [Related]
11. Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones. Simunovic V; Müller R Chembiochem; 2007 Jul; 8(11):1273-80. PubMed ID: 17583882 [TBL] [Abstract][Full Text] [Related]
12. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Liao P; Wang H; Hemmerlin A; Nagegowda DA; Bach TJ; Wang M; Chye ML Plant Cell Rep; 2014 Jul; 33(7):1005-22. PubMed ID: 24682521 [TBL] [Abstract][Full Text] [Related]
13. Site-specific observation of acyl intermediate processing in thiotemplate biosynthesis by fourier transform mass spectrometry: the polyketide module of yersiniabactin synthetase. Mazur MT; Walsh CT; Kelleher NL Biochemistry; 2003 Nov; 42(46):13393-400. PubMed ID: 14621984 [TBL] [Abstract][Full Text] [Related]
14. Ability of Streptomyces spp. acyl carrier proteins and coenzyme A analogs to serve as substrates in vitro for E. coli holo-ACP synthase. Gehring AM; Lambalot RH; Vogel KW; Drueckhammer DG; Walsh CT Chem Biol; 1997 Jan; 4(1):17-24. PubMed ID: 9070424 [TBL] [Abstract][Full Text] [Related]
15. Ketosynthases in the initiation and elongation modules of aromatic polyketide synthases have orthogonal acyl carrier protein specificity. Tang Y; Lee TS; Kobayashi S; Khosla C Biochemistry; 2003 Jun; 42(21):6588-95. PubMed ID: 12767243 [TBL] [Abstract][Full Text] [Related]
17. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. Sulpizio A; Crawford CEW; Koweek RS; Charkoudian LK J Biol Chem; 2021; 296():100328. PubMed ID: 33493513 [TBL] [Abstract][Full Text] [Related]
18. The type I rat fatty acid synthase ACP shows structural homology and analogous biochemical properties to type II ACPs. Reed MA; Schweizer M; Szafranska AE; Arthur C; Nicholson TP; Cox RJ; Crosby J; Crump MP; Simpson TJ Org Biomol Chem; 2003 Feb; 1(3):463-71. PubMed ID: 12926246 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Tang L; Yoon YJ; Choi CY; Hutchinson CR Gene; 1998 Aug; 216(2):255-65. PubMed ID: 9729415 [TBL] [Abstract][Full Text] [Related]
20. Utilization of enzymatically phosphopantetheinylated acyl carrier proteins and acetyl-acyl carrier proteins by the actinorhodin polyketide synthase. Carreras CW; Gehring AM; Walsh CT; Khosla C Biochemistry; 1997 Sep; 36(39):11757-61. PubMed ID: 9305965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]