These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 21036150)

  • 1. The role of active site residues in the oxidant specificity of the Orp1 thiol peroxidase.
    Takanishi CL; Ma LH; Wood MJ
    Biochem Biophys Res Commun; 2010 Dec; 403(1):46-51. PubMed ID: 21036150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of oxidative stress perception by the Orp1 protein.
    Ma LH; Takanishi CL; Wood MJ
    J Biol Chem; 2007 Oct; 282(43):31429-36. PubMed ID: 17720812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.
    Selles B; Hugo M; Trujillo M; Srivastava V; Wingsle G; Jacquot JP; Radi R; Rouhier N
    Biochem J; 2012 Mar; 442(2):369-80. PubMed ID: 22122405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61.
    Baker LM; Poole LB
    J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases.
    Garcerá A; Barreto L; Piedrafita L; Tamarit J; Herrero E
    Biochem J; 2006 Sep; 398(2):187-96. PubMed ID: 16709151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity.
    Wilkinson SR; Meyer DJ; Kelly JM
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):755-61. PubMed ID: 11104683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway.
    Mason JT; Kim SK; Knaff DB; Wood MJ
    Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase.
    Ellis HR; Poole LB
    Biochemistry; 1997 Dec; 36(48):15013-8. PubMed ID: 9398227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identity and functions of CxxC-derived motifs.
    Fomenko DE; Gladyshev VN
    Biochemistry; 2003 Sep; 42(38):11214-25. PubMed ID: 14503871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei.
    Schlecker T; Comini MA; Melchers J; Ruppert T; Krauth-Siegel RL
    Biochem J; 2007 Aug; 405(3):445-54. PubMed ID: 17456049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance.
    Avery AM; Willetts SA; Avery SV
    J Biol Chem; 2004 Nov; 279(45):46652-8. PubMed ID: 15337745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p.
    Quintanar L; Stoj C; Wang TP; Kosman DJ; Solomon EI
    Biochemistry; 2005 Apr; 44(16):6081-91. PubMed ID: 15835897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution.
    Ren B; Huang W; Akesson B; Ladenstein R
    J Mol Biol; 1997 May; 268(5):869-85. PubMed ID: 9180378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant.
    Susan-Resiga D; Nowak T
    Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural characterization of a thiol peroxidase from Mycobacterium tuberculosis.
    Rho BS; Hung LW; Holton JM; Vigil D; Kim SI; Park MS; Terwilliger TC; Pédelacq JD
    J Mol Biol; 2006 Sep; 361(5):850-63. PubMed ID: 16884737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.