These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 21036375)

  • 1. Indolyl-3-acetaldoxime dehydratase from the phytopathogenic fungus Sclerotinia sclerotiorum: purification, characterization, and substrate specificity.
    Pedras MS; Minic Z; Thongbam PD; Bhaskar V; Montaut S
    Phytochemistry; 2010 Dec; 71(17-18):1952-62. PubMed ID: 21036375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification, characterization, and partial primary sequence of a major-maltotriose-producing alpha-amylase, ScAmy43, from Sclerotinia sclerotiorum.
    Ben Abdelmalek-Khedher I; Urdaci MC; Limam F; Schmitter JM; Marzouki MN; Bressollier P
    J Microbiol Biotechnol; 2008 Sep; 18(9):1555-63. PubMed ID: 18852512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of aldoxime dehydratase of the head blight fungus, Fusarium graminearum.
    Kato Y; Asano Y
    Biosci Biotechnol Biochem; 2005 Nov; 69(11):2254-7. PubMed ID: 16306715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassinin oxidase, a fungal detoxifying enzyme to overcome a plant defense -- purification, characterization and inhibition.
    Pedras MS; Minic Z; Jha M
    FEBS J; 2008 Jul; 275(14):3691-705. PubMed ID: 18549452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.
    Pedras MS; Hossain S
    Phytochemistry; 2011 Dec; 72(18):2308-16. PubMed ID: 21920565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a glucoamylase secreted by the plant pathogen Scierotinia sclerotiorum.
    Martel MB; Hervé du Penhoat C; Létoublon R; Fèvre M
    Can J Microbiol; 2002 Mar; 48(3):212-8. PubMed ID: 11989765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium.
    Yang JK; Ye FP; Mi QL; Tang SQ; Li J; Zhang KQ
    J Microbiol Biotechnol; 2008 May; 18(5):852-8. PubMed ID: 18633281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis, and evaluation of potential inhibitors of brassinin glucosyltransferase, a phytoalexin detoxifying enzyme from Sclerotinia sclerotiorum.
    Pedras MS; Hossain M
    Bioorg Med Chem; 2007 Sep; 15(17):5981-96. PubMed ID: 17590338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing.
    Chen C; Harel A; Gorovoits R; Yarden O; Dickman MB
    Mol Plant Microbe Interact; 2004 Apr; 17(4):404-13. PubMed ID: 15077673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum.
    Yajima W; Kav NN
    Proteomics; 2006 Nov; 6(22):5995-6007. PubMed ID: 17051649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum.
    Hou X; Boyetchko SM; Brkic M; Olson D; Ross A; Hegedus D
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):644-53. PubMed ID: 16496141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody.
    Yajima W; Rahman MH; Das D; Suresh MR; Kav NN
    J Agric Food Chem; 2008 Oct; 56(20):9455-63. PubMed ID: 18800799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes.
    Kasza Z; Vagvölgyi C; Févre M; Cotton P
    Curr Microbiol; 2004 Mar; 48(3):208-13. PubMed ID: 15057467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and substrate binding properties of heme-containing aldoxime dehydratases, OxdB and OxdRE.
    Kobayashi K; Pal B; Yoshioka S; Kato Y; Asano Y; Kitagawa T; Aono S
    J Inorg Biochem; 2006 May; 100(5-6):1069-74. PubMed ID: 16414119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of strictosidine synthase.
    McCoy E; Galan MC; O'Connor SE
    Bioorg Med Chem Lett; 2006 May; 16(9):2475-8. PubMed ID: 16481164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge.
    Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN
    J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum.
    Rodríguez MA; Cabrera G; Godeas A
    J Appl Microbiol; 2006 Mar; 100(3):575-86. PubMed ID: 16478497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum.
    Sexton AC; Cozijnsen AJ; Keniry A; Jewell E; Love CG; Batley J; Edwards D; Howlett BJ
    FEMS Microbiol Lett; 2006 May; 258(1):150-60. PubMed ID: 16630270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean.
    Favaron F; Sella L; D'Ovidio R
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1402-9. PubMed ID: 15597746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecificity and catalytic function of histidine residues in 4a-hydroxy-tetrahydropterin dehydratase/DCoH.
    Rebrin I; Thöny B; Bailey SW; Ayling JE
    Biochemistry; 1998 Aug; 37(32):11246-54. PubMed ID: 9698371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.