BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21036470)

  • 1. Management of arsenic-accumulated waste from constructed wetland treatment of mountain tap-water.
    Nakwanit S; Visoottiviseth P; Khokiattiwong S; Sangchoom W
    J Hazard Mater; 2011 Jan; 185(2-3):1081-5. PubMed ID: 21036470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
    Ye ZH; Lin ZQ; Whiting SN; de Souza MP; Terry N
    Chemosphere; 2003 Sep; 52(9):1571-9. PubMed ID: 12867190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic removal by iron oxide coated sponge: treatment and waste management.
    Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK
    Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of arsenic in submerged soil by wetland plants.
    Jomjun N; Siripen T; Maliwan S; Jintapat N; Prasak T; Somporn C; Petch P
    Int J Phytoremediation; 2011 Jan; 13(1):35-46. PubMed ID: 21598766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand.
    Chintakovid W; Visoottiviseth P; Khokiattiwong S; Lauengsuchonkul S
    Chemosphere; 2008 Feb; 70(8):1532-7. PubMed ID: 17904614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic stabilization on water treatment residuals by calcium addition.
    Camacho J; Wee HY; Kramer TA; Autenrieth R
    J Hazard Mater; 2009 Jun; 165(1-3):599-603. PubMed ID: 19036504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomaterial based approach for arsenic removal from water.
    Al Rmalli SW; Harrington CF; Ayub M; Haris PI
    J Environ Monit; 2005 Apr; 7(4):279-82. PubMed ID: 15798792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal processes for arsenic in constructed wetlands.
    Lizama A K; Fletcher TD; Sun G
    Chemosphere; 2011 Aug; 84(8):1032-43. PubMed ID: 21549410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of elemental uptake in the root chemistry of wetland plants.
    Aryal R; Nirola R; Beecham S; Kamruzzaman M
    Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disposal of water treatment wastes containing arsenic - a review.
    Sullivan C; Tyrer M; Cheeseman CR; Graham NJ
    Sci Total Environ; 2010 Mar; 408(8):1770-8. PubMed ID: 20153878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic contaminated site at an abandoned copper smelter plant: waste characterization and solidification/stabilization treatment.
    Shih CJ; Lin CF
    Chemosphere; 2003 Nov; 53(7):691-703. PubMed ID: 13129509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water.
    Souter PF; Cruickshank GD; Tankerville MZ; Keswick BH; Ellis BD; Langworthy DE; Metz KA; Appleby MR; Hamilton N; Jones AL; Perry JD
    J Water Health; 2003 Jun; 1(2):73-84. PubMed ID: 15382736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    Int J Phytoremediation; 2015; 17(9):900-6. PubMed ID: 25831275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing arsenic leachability from pulverized cement concrete produced from arsenic-laden solid CalSiCo-sludge.
    Bhunia P; Pal A; Bandyopadhyay M
    J Hazard Mater; 2007 Mar; 141(3):826-33. PubMed ID: 16938388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple technology for arsenic removal from drinking water using hydrotalcite.
    Gillman GP
    Sci Total Environ; 2006 Aug; 366(2-3):926-31. PubMed ID: 16546240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater.
    Mirza N; Mahmood Q; Pervez A; Ahmad R; Farooq R; Shah MM; Azim MR
    Bioresour Technol; 2010 Aug; 101(15):5815-9. PubMed ID: 20363125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.