These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 21036687)
1. Influence of cyclic bending loading on in vivo skeletal tissue regeneration from periosteal origin. Moukoko D; Pourquier D; Pithioux M; Chabrand P Orthop Traumatol Surg Res; 2010 Dec; 96(8):833-9. PubMed ID: 21036687 [TBL] [Abstract][Full Text] [Related]
2. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis. Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050 [TBL] [Abstract][Full Text] [Related]
3. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394 [TBL] [Abstract][Full Text] [Related]
4. Substrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber. Burke DP; Khayyeri H; Kelly DJ Biomech Model Mechanobiol; 2015 Jan; 14(1):93-105. PubMed ID: 24832965 [TBL] [Abstract][Full Text] [Related]
5. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Kelly DJ; Jacobs CR Birth Defects Res C Embryo Today; 2010 Mar; 90(1):75-85. PubMed ID: 20301221 [TBL] [Abstract][Full Text] [Related]
7. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Koga H; Muneta T; Nagase T; Nimura A; Ju YJ; Mochizuki T; Sekiya I Cell Tissue Res; 2008 Aug; 333(2):207-15. PubMed ID: 18560897 [TBL] [Abstract][Full Text] [Related]
8. Regenerated cartilage produced by autogenous periosteal grafts: a histologic and mechanical study in rabbits under the influence of continuous passive motion. Martin-Hernandez C; Cebamanos-Celma J; Molina-Ros A; Ballester-Jimenez JJ; Ballester-Soleda J Arthroscopy; 2010 Jan; 26(1):76-83. PubMed ID: 20117630 [TBL] [Abstract][Full Text] [Related]
9. Periosteum responds to dynamic fluid pressure by proliferating in vitro. Saris DB; Sanyal A; An KN; Fitzsimmons JS; O'Driscoll SW J Orthop Res; 1999 Sep; 17(5):668-77. PubMed ID: 10569475 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Mechanical and Chemical Stimulations on Osteocalcin and Runx2 Expression in Mesenchymal Stem Cells. Jazayeri M; Shokrgozar MA; Haghighipour N; Mahdian R; Farrokhi M; Bonakdar S; Mirahmadi F; Abbariki TN Mol Cell Biomech; 2015 Sep; 12(3):197-213. PubMed ID: 27281956 [TBL] [Abstract][Full Text] [Related]
12. Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Nagel T; Kelly DJ Biomech Model Mechanobiol; 2010 Jun; 9(3):359-72. PubMed ID: 20039092 [TBL] [Abstract][Full Text] [Related]
13. In vivo generation of cartilage from periosteum. Emans PJ; Surtel DA; Frings EJ; Bulstra SK; Kuijer R Tissue Eng; 2005; 11(3-4):369-77. PubMed ID: 15869417 [TBL] [Abstract][Full Text] [Related]
14. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading. Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading. Wu JZ; Herzog W J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231 [TBL] [Abstract][Full Text] [Related]
16. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141 [TBL] [Abstract][Full Text] [Related]
17. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Kisiel AH; McDuffee LA; Masaoud E; Bailey TR; Esparza Gonzalez BP; Nino-Fong R Am J Vet Res; 2012 Aug; 73(8):1305-17. PubMed ID: 22849692 [TBL] [Abstract][Full Text] [Related]
18. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Jung Y; Kim SH; Kim YH; Kim SH Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251 [TBL] [Abstract][Full Text] [Related]
19. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. Palomares KT; Gleason RE; Mason ZD; Cullinane DM; Einhorn TA; Gerstenfeld LC; Morgan EF J Orthop Res; 2009 Sep; 27(9):1123-32. PubMed ID: 19242967 [TBL] [Abstract][Full Text] [Related]
20. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure. Mukherjee N; Saris DB; Schultz FM; Berglund LJ; An KN; O' Driscoll SW J Orthop Res; 2001 Jul; 19(4):524-30. PubMed ID: 11518256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]