BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21037205)

  • 1. Comparative genomic analysis of fruiting body formation in Myxococcales.
    Huntley S; Hamann N; Wegener-Feldbrügge S; Treuner-Lange A; Kube M; Reinhardt R; Klages S; Müller R; Ronning CM; Nierman WC; Søgaard-Andersen L
    Mol Biol Evol; 2011 Feb; 28(2):1083-97. PubMed ID: 21037205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum So ce56.
    Khatri Y; Hannemann F; Perlova O; Müller R; Bernhardt R
    FEBS Lett; 2011 Jun; 585(11):1506-13. PubMed ID: 21521637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of morphogenesis in myxobacteria.
    Shimkets LJ
    Crit Rev Microbiol; 1987; 14(3):195-227. PubMed ID: 3107905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling cell movement to multicellular development in myxobacteria.
    Kaiser D
    Nat Rev Microbiol; 2003 Oct; 1(1):45-54. PubMed ID: 15040179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes.
    Treuner-Lange A
    PLoS One; 2010 Jun; 5(6):e11164. PubMed ID: 20567509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.
    McLoon AL; Boeck ME; Bruckskotten M; Keyel AC; Søgaard-Andersen L
    BMC Genomics; 2021 Nov; 22(1):784. PubMed ID: 34724903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication.
    Marcos-Torres FJ; Volz C; Müller R
    Nat Commun; 2020 Nov; 11(1):5563. PubMed ID: 33149152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation in the rel gene of Sorangium cellulosum affects morphological and physiological differentiation.
    Knauber T; Doss SD; Gerth K; Perlova O; Müller R; Treuner-Lange A
    Mol Microbiol; 2008 Jul; 69(1):254-66. PubMed ID: 18513216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel transcriptome patterns accompany evolutionary restoration of defective social development in the bacterium Myxococcus xanthus.
    Kadam SV; Wegener-Feldbrügge S; Søgaard-Andersen L; Velicer GJ
    Mol Biol Evol; 2008 Jul; 25(7):1274-81. PubMed ID: 18385222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling in myxobacteria.
    Kaiser D
    Annu Rev Microbiol; 2004; 58():75-98. PubMed ID: 15487930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome.
    Pérez J; Castañeda-García A; Jenke-Kodama H; Müller R; Muñoz-Dorado J
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15950-5. PubMed ID: 18836084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental cheating in the social bacterium Myxococcus xanthus.
    Velicer GJ; Kroos L; Lenski RE
    Nature; 2000 Apr; 404(6778):598-601. PubMed ID: 10766241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression during development of Myxococcus xanthus. Analysis of the genes for protein S.
    Downard JS; Kupfer D; Zusman DR
    J Mol Biol; 1984 Jun; 175(4):469-92. PubMed ID: 6204058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions.
    Berleman JE; Kirby JR
    J Bacteriol; 2007 Aug; 189(15):5675-82. PubMed ID: 17513469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fbfB, a gene encoding a putative galactose oxidase, is involved in Stigmatella aurantiaca fruiting body formation.
    Silakowski B; Ehret H; Schairer HU
    J Bacteriol; 1998 Mar; 180(5):1241-7. PubMed ID: 9495764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of protein production in Myxococcus xanthus during spore formation induced by glycerol, dimethyl sulfoxide, and phenethyl alcohol.
    Komano T; Inouye S; Inouye M
    J Bacteriol; 1980 Dec; 144(3):1076-82. PubMed ID: 6160140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of protein S genes during Myxococcus xanthus development.
    Downard JS; Zusman DR
    J Bacteriol; 1985 Mar; 161(3):1146-55. PubMed ID: 3918984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus.
    Kim SK; Kaiser D
    Genes Dev; 1990 Jun; 4(6):896-904. PubMed ID: 2116988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria.
    Thomas SH; Wagner RD; Arakaki AK; Skolnick J; Kirby JR; Shimkets LJ; Sanford RA; Löffler FE
    PLoS One; 2008 May; 3(5):e2103. PubMed ID: 18461135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.