BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21037497)

  • 1. Discontinuation of orthokeratology and myopic progression.
    Lee TT; Cho P
    Optom Vis Sci; 2010 Dec; 87(12):1053-6. PubMed ID: 21037497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthokeratology combined with spectacles in moderate to high myopia adolescents.
    Wang F; Wu G; Xu X; Wu H; Peng Y; Lin Y; Jiang J
    Cont Lens Anterior Eye; 2024 Feb; 47(1):102088. PubMed ID: 37977905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7077-85. PubMed ID: 22969068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses.
    Kang P; Swarbrick H
    Optom Vis Sci; 2011 Apr; 88(4):476-82. PubMed ID: 21317669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuation of orthokeratology on eyeball elongation (DOEE).
    Cho P; Cheung SW
    Cont Lens Anterior Eye; 2017 Apr; 40(2):82-87. PubMed ID: 28038841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology.
    Tsukiyama J; Miyamoto Y; Higaki S; Fukuda M; Shimomura Y
    Eye Contact Lens; 2008 Jan; 34(1):17-20. PubMed ID: 18180677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective Role of Orthokeratology in Reducing Risk of Rapid Axial Elongation: A Reanalysis of Data From the ROMIO and TO-SEE Studies.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1411-1416. PubMed ID: 28253404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthokeratology for slowing myopic progression in a pair of identical twins.
    Chan KY; Cheung SW; Cho P
    Cont Lens Anterior Eye; 2014 Apr; 37(2):116-9. PubMed ID: 24144551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of axial length measurements for monitoring myopic progression in orthokeratology.
    Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1613-5. PubMed ID: 23361504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of parental myopia in the progression of myopia and its interaction with treatment in COMET children.
    Kurtz D; Hyman L; Gwiazda JE; Manny R; Dong LM; Wang Y; Scheiman M;
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):562-70. PubMed ID: 17251451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Orthokeratology on Axial Length Elongation in Anisomyopic Children.
    Zhang Y; Chen Y
    Optom Vis Sci; 2019 Jan; 96(1):43-47. PubMed ID: 30570595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myopia control using toric orthokeratology (TO-SEE study).
    Chen C; Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6510-7. PubMed ID: 24003088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High myopia-partial reduction orthokeratology (HM-PRO): study design.
    Charm J; Cho P
    Cont Lens Anterior Eye; 2013 Aug; 36(4):164-70. PubMed ID: 23518209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of the effects of orthokeratology on peripheral refraction and corneal topography.
    Kang P; Swarbrick H
    Ophthalmic Physiol Opt; 2013 May; 33(3):277-82. PubMed ID: 23347397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal reshaping influences myopic prescription stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability.
    Downie LE; Lowe R
    Eye Contact Lens; 2013 Jul; 39(4):303-10. PubMed ID: 23771013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R
    Eye Contact Lens; 2014 Mar; 40(2):84-90. PubMed ID: 24508773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of orthokeratology on axial length growth in myopic anisometropes.
    Chen Z; Zhou J; Qu X; Zhou X; Xue F;
    Cont Lens Anterior Eye; 2018 Jun; 41(3):263-266. PubMed ID: 29329901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Categorisation of myopia progression by change in refractive error and axial elongation and their impact on benefit of myopia control using orthokeratology.
    Cho P; Cheung SW; Boost MV
    PLoS One; 2020; 15(12):e0243416. PubMed ID: 33373370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K
    Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.