These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21037620)

  • 1. Calibration of light forces in optical tweezers.
    Felgner H; Müller O; Schliwa M
    Appl Opt; 1995 Feb; 34(6):977-82. PubMed ID: 21037620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric study of the forces on microspheres held by optical tweezers.
    Wright WH; Sonek GJ; Berns MW
    Appl Opt; 1994 Mar; 33(9):1735-48. PubMed ID: 20885501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for polarization in the calibration of a donut beam axial optical tweezers.
    Pollari R; Milstein JN
    PLoS One; 2018; 13(2):e0193402. PubMed ID: 29474494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient in-depth trapping with an oil-immersion objective lens.
    Reihani SN; Charsooghi MA; Khalesifard HR; Golestanian R
    Opt Lett; 2006 Mar; 31(6):766-8. PubMed ID: 16544617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional positioning of optically trapped nanoparticles.
    Higuchi T; Pham QD; Hasegawa S; Hayasaki Y
    Appl Opt; 2011 Dec; 50(34):H183-8. PubMed ID: 22193006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers.
    Sheu FW; Lan TK; Lin YC; Chen S; Ay C
    Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of optical trapping effect by using the focused high-order Laguerre-Gaussian beams.
    Chai HS; Wang LG
    Micron; 2012 Aug; 43(8):887-92. PubMed ID: 22464742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position.
    Ukita H; Kawashima H
    Appl Opt; 2010 Apr; 49(10):1991-6. PubMed ID: 20357886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam.
    Michihata M; Hayashi T; Takaya Y
    Appl Opt; 2009 Nov; 48(32):6143-51. PubMed ID: 19904310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping forces for colloids at the oil-water interface.
    Park BJ; Furst EM
    Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic axial stabilization of counter-propagating beam-traps with feedback control.
    Tauro S; Bañas A; Palima D; Glückstad J
    Opt Express; 2010 Aug; 18(17):18217-22. PubMed ID: 20721211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards absolute calibration of optical tweezers.
    Viana NB; Rocha MS; Mesquita ON; Mazolli A; Maia Neto PA; Nussenzveig HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021914. PubMed ID: 17358374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2545-54. PubMed ID: 15119624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.