These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Rohrbach A; Stelzer EH Appl Opt; 2002 May; 41(13):2494-507. PubMed ID: 12009161 [TBL] [Abstract][Full Text] [Related]
46. Optical trapping force combining an optical fiber probe and an AFM metallic probe. Liu B; Yang L; Wang Y Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196 [TBL] [Abstract][Full Text] [Related]
47. Angular and position stability of a nanorod trapped in an optical tweezers. Bareil PB; Sheng Y Opt Express; 2010 Dec; 18(25):26388-98. PubMed ID: 21164989 [TBL] [Abstract][Full Text] [Related]
49. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Bowman R; Gibson G; Padgett M Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039 [TBL] [Abstract][Full Text] [Related]
50. Inversion of gradient forces for high refractive index particles in optical trapping. Ambrosio LA; Hernández-Figueroa HE Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597 [TBL] [Abstract][Full Text] [Related]
51. Multiplying optical tweezers force using a micro-lever. Lin CL; Lee YH; Lin CT; Liu YJ; Hwang JL; Chung TT; Baldeck PL Opt Express; 2011 Oct; 19(21):20604-9. PubMed ID: 21997068 [TBL] [Abstract][Full Text] [Related]
53. Selective optical trapping and deposition of polymer and aromatic molecules from binary mixed solution. Nabetani Y; Yoshikawa H; Masuhara H J Phys Chem B; 2006 Nov; 110(43):21399-402. PubMed ID: 17064084 [TBL] [Abstract][Full Text] [Related]
54. Polarization gradient: exploring an original route for optical trapping and manipulation. Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620 [TBL] [Abstract][Full Text] [Related]
55. Calculation of optical forces on an ellipsoid using vectorial ray tracing method. Zhou JH; Zhong MC; Wang ZQ; Li YM Opt Express; 2012 Jul; 20(14):14928-37. PubMed ID: 22772187 [TBL] [Abstract][Full Text] [Related]
56. Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres. Kachynski AV; Kuzmin AN; Pudavar HE; Kaputa DS; Cartwright AN; Prasad PN Opt Lett; 2003 Dec; 28(23):2288-90. PubMed ID: 14680158 [TBL] [Abstract][Full Text] [Related]
57. Study on particle size dependence of axial trapping efficiency. Lee W; Kim H; Oh CH Appl Opt; 2015 Feb; 54(4):901-7. PubMed ID: 25967803 [TBL] [Abstract][Full Text] [Related]
58. Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers. Zhou JH; Ren HL; Cai J; Li YM Appl Opt; 2008 Nov; 47(33):6307-14. PubMed ID: 19023398 [TBL] [Abstract][Full Text] [Related]
59. Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Fällman E; Axner O Appl Opt; 2003 Jul; 42(19):3915-26. PubMed ID: 12868831 [TBL] [Abstract][Full Text] [Related]
60. Optical Tweezers Apparatus Based on a Cost-Effective IR Laser-Hardware and Software Description. Burdík M; Kužela T; Fojtů D; Elisek P; Hrnčiřík J; Jašek R; Ingr M Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]