BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21037640)

  • 1. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1108-16. PubMed ID: 21037640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative concentration measurements of atomic sodium in an atmospheric hydrocarbon flame with asynchronous optical sampling.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1117-26. PubMed ID: 21037641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of atomic sodium in flames by asynchronous optical sampling: theory and experiment.
    Fiechtner GJ; King GB; Laurendeau NM; Lytle FE
    Appl Opt; 1992 May; 31(15):2849-64. PubMed ID: 20725220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.
    Reichardt TA; Klassen MS; King GB; Laurendeau NM
    Appl Opt; 1996 Apr; 35(12):2125-39. PubMed ID: 21085341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.
    van Wilderen LJ; Clark IP; Towrie M; van Thor JJ
    J Phys Chem B; 2009 Dec; 113(51):16354-64. PubMed ID: 19950906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond pump-probe absorption spectroscopy in gases: models and experimental validation.
    Settersten TB; Linne MA
    Appl Opt; 2002 May; 41(15):2869-78. PubMed ID: 12027174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited state absorption dynamics in metal cluster polymer [WS4Cu3I(4-bpy)3]n solution.
    Yang J; Gu J; Song Y; Guang S; Wang Y; Zhang W; Lang J
    J Phys Chem B; 2007 Jul; 111(28):7987-93. PubMed ID: 17590038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H(2)/O(2)/N(2) flat flames with photoionization controlled-loss spectroscopy.
    Salmon JT; Laurendeau NM
    Appl Opt; 1987 Jul; 26(14):2881-91. PubMed ID: 20489977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches.
    Zizak G; Petrucci GA; Stevenson CL; Winefordner JD
    Appl Opt; 1991 Dec; 30(36):5270-5. PubMed ID: 20717358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond laser-spectroscopy measurement of hydroxyl fluorescence lifetime in flames.
    Bergano NS; Jaanimagi PA; Salour MM; Bechtel JH
    Opt Lett; 1983 Aug; 8(8):443-5. PubMed ID: 19718142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy.
    Kulatilaka WD; Lucht RP; Roy S; Gord JR; Settersten TB
    Appl Opt; 2007 Jul; 46(19):3921-7. PubMed ID: 17571128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of two-color laser system for high-resolution polarization spectroscopy measurements of atomic hydrogen.
    Bhuiyan AH; Satija A; Naik SV; Lucht RP
    Opt Lett; 2012 Sep; 37(17):3564-6. PubMed ID: 22940950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical fiber-based single-shot picosecond transient absorption spectroscopy.
    Cook AR; Shen Y
    Rev Sci Instrum; 2009 Jul; 80(7):073106. PubMed ID: 19655942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach for a quantitative on-the-fly fluorescence diagnostic in combustion systems.
    Alfano AJ
    Appl Opt; 1989 Dec; 28(23):5010-5. PubMed ID: 20555992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C(2)H(6)/O(2)/N(2) flames.
    Carter CD; King GB; Laurendeau NM
    Appl Opt; 1992 Apr; 31(10):1511-22. PubMed ID: 20720785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring picosecond excited-state lifetimes at synchrotron sources.
    Fournier B; Coppens P
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):497-502. PubMed ID: 22713880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.
    Papagiannakis E; Vengris M; Larsen DS; van Stokkum IH; Hiller RG; van Grondelle R
    J Phys Chem B; 2006 Jan; 110(1):512-21. PubMed ID: 16471563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved saturated absorption measurements of OH in methane-air flames.
    Zizak G; Cignoli F; Benecchi S
    Appl Opt; 1987 Oct; 26(19):4293-7. PubMed ID: 20490224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl and its concentration profile in methane-air flames.
    Bechtel JH; Teets RE
    Appl Opt; 1979 Dec; 18(24):4138-44. PubMed ID: 20216770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.