These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21037640)

  • 1. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1108-16. PubMed ID: 21037640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative concentration measurements of atomic sodium in an atmospheric hydrocarbon flame with asynchronous optical sampling.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1117-26. PubMed ID: 21037641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of atomic sodium in flames by asynchronous optical sampling: theory and experiment.
    Fiechtner GJ; King GB; Laurendeau NM; Lytle FE
    Appl Opt; 1992 May; 31(15):2849-64. PubMed ID: 20725220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.
    Reichardt TA; Klassen MS; King GB; Laurendeau NM
    Appl Opt; 1996 Apr; 35(12):2125-39. PubMed ID: 21085341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.
    van Wilderen LJ; Clark IP; Towrie M; van Thor JJ
    J Phys Chem B; 2009 Dec; 113(51):16354-64. PubMed ID: 19950906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond pump-probe absorption spectroscopy in gases: models and experimental validation.
    Settersten TB; Linne MA
    Appl Opt; 2002 May; 41(15):2869-78. PubMed ID: 12027174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited state absorption dynamics in metal cluster polymer [WS4Cu3I(4-bpy)3]n solution.
    Yang J; Gu J; Song Y; Guang S; Wang Y; Zhang W; Lang J
    J Phys Chem B; 2007 Jul; 111(28):7987-93. PubMed ID: 17590038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H(2)/O(2)/N(2) flat flames with photoionization controlled-loss spectroscopy.
    Salmon JT; Laurendeau NM
    Appl Opt; 1987 Jul; 26(14):2881-91. PubMed ID: 20489977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches.
    Zizak G; Petrucci GA; Stevenson CL; Winefordner JD
    Appl Opt; 1991 Dec; 30(36):5270-5. PubMed ID: 20717358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond laser-spectroscopy measurement of hydroxyl fluorescence lifetime in flames.
    Bergano NS; Jaanimagi PA; Salour MM; Bechtel JH
    Opt Lett; 1983 Aug; 8(8):443-5. PubMed ID: 19718142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy.
    Kulatilaka WD; Lucht RP; Roy S; Gord JR; Settersten TB
    Appl Opt; 2007 Jul; 46(19):3921-7. PubMed ID: 17571128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of two-color laser system for high-resolution polarization spectroscopy measurements of atomic hydrogen.
    Bhuiyan AH; Satija A; Naik SV; Lucht RP
    Opt Lett; 2012 Sep; 37(17):3564-6. PubMed ID: 22940950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical fiber-based single-shot picosecond transient absorption spectroscopy.
    Cook AR; Shen Y
    Rev Sci Instrum; 2009 Jul; 80(7):073106. PubMed ID: 19655942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach for a quantitative on-the-fly fluorescence diagnostic in combustion systems.
    Alfano AJ
    Appl Opt; 1989 Dec; 28(23):5010-5. PubMed ID: 20555992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C(2)H(6)/O(2)/N(2) flames.
    Carter CD; King GB; Laurendeau NM
    Appl Opt; 1992 Apr; 31(10):1511-22. PubMed ID: 20720785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring picosecond excited-state lifetimes at synchrotron sources.
    Fournier B; Coppens P
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):497-502. PubMed ID: 22713880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.
    Papagiannakis E; Vengris M; Larsen DS; van Stokkum IH; Hiller RG; van Grondelle R
    J Phys Chem B; 2006 Jan; 110(1):512-21. PubMed ID: 16471563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved saturated absorption measurements of OH in methane-air flames.
    Zizak G; Cignoli F; Benecchi S
    Appl Opt; 1987 Oct; 26(19):4293-7. PubMed ID: 20490224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl and its concentration profile in methane-air flames.
    Bechtel JH; Teets RE
    Appl Opt; 1979 Dec; 18(24):4138-44. PubMed ID: 20216770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.