These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21037641)

  • 1. Quantitative concentration measurements of atomic sodium in an atmospheric hydrocarbon flame with asynchronous optical sampling.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1117-26. PubMed ID: 21037641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of atomic sodium in flames by asynchronous optical sampling: theory and experiment.
    Fiechtner GJ; King GB; Laurendeau NM; Lytle FE
    Appl Opt; 1992 May; 31(15):2849-64. PubMed ID: 20725220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1108-16. PubMed ID: 21037640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling.
    Bartels A; Cerna R; Kistner C; Thoma A; Hudert F; Janke C; Dekorsy T
    Rev Sci Instrum; 2007 Mar; 78(3):035107. PubMed ID: 17411217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling.
    Kim Y; Yee DS
    Opt Lett; 2010 Nov; 35(22):3715-7. PubMed ID: 21081973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging.
    Yasui T; Kabetani Y; Ohgi Y; Yokoyama S; Araki T
    Appl Opt; 2010 Oct; 49(28):5262-70. PubMed ID: 20885461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asynchronous optical sampling: a new combustion diagnostic for potential use in turbulent, high-pressure flames.
    Kneisler RJ; Lytle FE; Fiechtner GJ; Jiang Y; King GB; Laurendeau NM
    Opt Lett; 1989 Mar; 14(5):260-2. PubMed ID: 19749888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.
    Hsu LJ; Alwahabi ZT; Nathan GJ; Li Y; Li ZS; Aldén M
    Appl Spectrosc; 2011 Jun; 65(6):684-91. PubMed ID: 21639991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing pump-probe reflectivity measurements of ultrafast photoacoustics with modulated asynchronous optical sampling.
    Velsink MC; Illienko M; Sudera P; Witte S
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37787626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for low-pressure gas-phase analysis.
    Yasui T; Kawamoto K; Hsieh YD; Sakaguchi Y; Jewariya M; Inaba H; Minoshima K; Hindle F; Araki T
    Opt Express; 2012 Jul; 20(14):15071-8. PubMed ID: 22772203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames.
    Goldsmith JE
    Appl Opt; 1987 Sep; 26(17):3566-72. PubMed ID: 20490104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbitrary-detuning asynchronous optical sampling with amplified laser systems.
    Antonucci L; Bonvalet A; Solinas X; Daniault L; Joffre M
    Opt Express; 2015 Oct; 23(21):27931-40. PubMed ID: 26480451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature- and species-dependent quenching of NO A 2Sigma+(v'=0) probed by two-photon laser-induced fluorescence using a picosecond laser.
    Settersten TB; Patterson BD; Gray JA
    J Chem Phys; 2006 Jun; 124(23):234308. PubMed ID: 16821919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-vapor detection using asynchronous THz sampling.
    Brown MS; Fiechtner GJ; Rudd JV; Zimdars DA; Warmuth M; Gord JR
    Appl Spectrosc; 2006 Mar; 60(3):261-5. PubMed ID: 16608568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer.
    Lang-Yona N; Rudich Y; Segre E; Dinar E; Abo-Riziq A
    Anal Chem; 2009 Mar; 81(5):1762-9. PubMed ID: 19199808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local OH concentration measurement in atmospheric pressure flames by a laser-saturated fluorescence method: two-optical path laser-induced fluorescence.
    Desgroux P; Cottereau MJ
    Appl Opt; 1991 Jan; 30(1):90-7. PubMed ID: 20581952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches.
    Zizak G; Petrucci GA; Stevenson CL; Winefordner JD
    Appl Opt; 1991 Dec; 30(36):5270-5. PubMed ID: 20717358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asynchronous optical sampling data-acquisition trigger-signal derived from pulse coherence coincidence.
    Zhang H; Su B; Yang X; Wu Y; He J; Zhang C; Jones DR
    Rev Sci Instrum; 2018 Nov; 89(11):113108. PubMed ID: 30501358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].
    He Y; Zhang YJ; Kan RF; Xia H; Geng H; Ruan J; Wang M; Cui XJ; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):10-3. PubMed ID: 19385195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale control and rapid scanning of time delays ranging from picosecond to millisecond.
    Solinas X; Antonucci L; Bonvalet A; Joffre M
    Opt Express; 2017 Jul; 25(15):17811-17819. PubMed ID: 28789272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.