These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21037643)

  • 1. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.
    Fishkin JB; So PT; Cerussi AE; Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1995 Mar; 34(7):1143-55. PubMed ID: 21037643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique.
    Fantini S; Franceschini MA; Fishkin JB; Barbieri B; Gratton E
    Appl Opt; 1994 Aug; 33(22):5204-13. PubMed ID: 20935909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.
    Kienle A; Lilge L; Patterson MS; Hibst R; Steiner R; Wilson BC
    Appl Opt; 1996 May; 35(13):2304-14. PubMed ID: 21085367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements.
    Madsen SJ; Wilson BC; Patterson MS; Park YD; Jacques SL; Hefetz Y
    Appl Opt; 1992 Jun; 31(18):3509-17. PubMed ID: 20725319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine.
    Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R
    Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of photon density waves in multiple-scattering media.
    Tromberg BJ; Svaasand LO; Tsay TT; Haskell RC
    Appl Opt; 1993 Feb; 32(4):607-16. PubMed ID: 20802732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves.
    Yao Y; Barbour RL; Wang Y; Graber HL; Chang J
    Appl Opt; 1996 Feb; 35(4):735-51. PubMed ID: 21069064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light transport in tissue.
    Profio AE
    Appl Opt; 1989 Jun; 28(12):2216-22. PubMed ID: 20555502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MADSTRESS: a linear approach for evaluating scattering and absorption coefficients of samples measured using time-resolved spectroscopy in reflection.
    Chauchard F; Roger JM; Bellon-Maurel V; Abrahamsson C; Andersson-Engels S; Svanberg S
    Appl Spectrosc; 2005 Oct; 59(10):1229-35. PubMed ID: 18028619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm.
    Moes CJ; van Gemert MJ; Star WM; Marijnissen JP; Prahl SA
    Appl Opt; 1989 Jun; 28(12):2292-6. PubMed ID: 20555514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy.
    Bosschaart N; Aalders MC; Faber DJ; Weda JJ; van Gemert MJ; van Leeuwen TG
    Opt Lett; 2009 Dec; 34(23):3746-8. PubMed ID: 19953182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes.
    Binzoni T; Leung TS; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Jan; 51(2):311-33. PubMed ID: 16394341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A specific feature of the procedure for determination of optical properties of turbid biological tissues and media in calculation tasks of medical noninvasive spectrophotometry].
    Rogatkin DA
    Med Tekh; 2007; (2):10-6. PubMed ID: 17650641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density.
    Wojtkiewicz S; Liebert A; Rix H; Maniewski R
    Phys Med Biol; 2011 Dec; 56(24):7709-23. PubMed ID: 22085805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.
    Dzhongova E; Harwood CR; Thennadil SN
    Appl Spectrosc; 2009 Jan; 63(1):25-32. PubMed ID: 19146716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain.
    Hebden JC; Arridge SR
    Appl Opt; 1996 Dec; 35(34):6788-96. PubMed ID: 21151264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.