These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Kim A; Roy M; Dadani F; Wilson BC Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574 [TBL] [Abstract][Full Text] [Related]
23. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system. Spirou GM; Mandelis A; Vitkin IA; Whelan WM Appl Opt; 2008 May; 47(14):2564-73. PubMed ID: 18470251 [TBL] [Abstract][Full Text] [Related]
24. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette. Blaney G; Sassaroli A; Fantini S Appl Sci (Basel); 2022 Nov; 12(21):. PubMed ID: 37811485 [TBL] [Abstract][Full Text] [Related]
25. Analytical model for extracting intrinsic fluorescence in turbid media. Wu J; Feld MS; Rava RP Appl Opt; 1993 Jul; 32(19):3585-95. PubMed ID: 20829983 [TBL] [Abstract][Full Text] [Related]
26. Determination of absorption and scattering coefficients for nonhomogeneous media. 2: experiment. Egan WG; Hilgeman T; Reichman J Appl Opt; 1973 Aug; 12(8):1816-23. PubMed ID: 20125612 [TBL] [Abstract][Full Text] [Related]
27. Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment. Zhadin NN; Alfano RR J Biomed Opt; 1998 Apr; 3(2):171-86. PubMed ID: 23015054 [TBL] [Abstract][Full Text] [Related]
29. Optical properties of turbid media with specularly reflecting boundaries: applications to biological problems. Hemenger RP Appl Opt; 1977 Jul; 16(7):2007-12. PubMed ID: 20168849 [TBL] [Abstract][Full Text] [Related]
30. Frequency domain measurements on turbid media with strong absorption using the PN approximation. Baltes C; Faris GW Appl Opt; 2009 Jun; 48(16):2991-3000. PubMed ID: 19488110 [TBL] [Abstract][Full Text] [Related]
31. Integrating sandwich: a new method of measurement of the light absorption coefficient for atmospheric particles. Clarke AD Appl Opt; 1982 Aug; 21(16):3011-20. PubMed ID: 20396166 [TBL] [Abstract][Full Text] [Related]
32. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. Patterson MS; Moulton JD; Wilson BC; Berndt KW; Lakowicz JR Appl Opt; 1991 Nov; 30(31):4474-6. PubMed ID: 20717230 [TBL] [Abstract][Full Text] [Related]
33. Absorption profile of a planetary atmosphere: a proposal for a scattering independent determination. Fymat AL; Lenoble J Appl Opt; 1972 Oct; 11(10):2249-54. PubMed ID: 20119320 [TBL] [Abstract][Full Text] [Related]
34. Double-integrating-sphere system for measuring the optical properties of tissue. Pickering JW; Prahl SA; van Wieringen N; Beek JF; Sterenborg HJ; van Gemert MJ Appl Opt; 1993 Feb; 32(4):399-410. PubMed ID: 20802704 [TBL] [Abstract][Full Text] [Related]
35. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Bevilacqua F; Berger AJ; Cerussi AE; Jakubowski D; Tromberg BJ Appl Opt; 2000 Dec; 39(34):6498-507. PubMed ID: 18354663 [TBL] [Abstract][Full Text] [Related]
36. Study of rough surfaces by light scattering. Marathay AS; Heiko L; Zuckerman JL Appl Opt; 1970 Nov; 9(11):2470-6. PubMed ID: 20094289 [TBL] [Abstract][Full Text] [Related]
37. Spectral characterization of liquid hemoglobin phantoms with varying oxygenation states. Majedy M; Saager RB; Strömberg T; Larsson M; Salerud EG J Biomed Opt; 2021 Dec; 27(7):. PubMed ID: 34850613 [TBL] [Abstract][Full Text] [Related]