These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21037730)
1. Reconstruction of a complex-valued object in double-passage coherent imaging through a random-phase screen. Nakajima N; Saleh BE Appl Opt; 1995 Apr; 34(11):1848-58. PubMed ID: 21037730 [TBL] [Abstract][Full Text] [Related]
2. Reconstruction of a complex-valued object in coherent imaging through a random-phase screen. Nakajima N; Saleh BE Appl Opt; 1994 Feb; 33(5):821-8. PubMed ID: 20862080 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of a vibrating object from its time-averaged image intensities by the use of exponential filtering. Nakajima N; Saleh BE Appl Opt; 1996 Aug; 35(23):4581-8. PubMed ID: 21102877 [TBL] [Abstract][Full Text] [Related]
4. High-resolution scanning phase retrieval with a probe beam of unknown modulus. Nakajima N Appl Opt; 1997 Jun; 36(17):3904-11. PubMed ID: 18253417 [TBL] [Abstract][Full Text] [Related]
5. Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel zone plate. Mastropietro F; Carbone D; Diaz A; Eymery J; Sentenac A; Metzger TH; Chamard V; Favre-Nicolin V Opt Express; 2011 Sep; 19(20):19223-32. PubMed ID: 21996864 [TBL] [Abstract][Full Text] [Related]
6. Discrete reconstruction of real phase objects: a comparison with computer-simulated phase objects. Fiadeiro PT; Emmony DC Appl Opt; 1995 Nov; 34(32):7460-7. PubMed ID: 21060620 [TBL] [Abstract][Full Text] [Related]
7. Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging. Latychevskaia T; Longchamp JN; Fink HW Opt Express; 2011 Sep; 19(20):19330-9. PubMed ID: 21996873 [TBL] [Abstract][Full Text] [Related]
8. Phase Retrieval From Fresnel Zone Intensity Measurements by use of Gaussian Filtering. Nakajima N Appl Opt; 1998 Sep; 37(26):6219-26. PubMed ID: 18286120 [TBL] [Abstract][Full Text] [Related]
10. Reconstruction of phase objects from experimental far field intensities by exponential filtering. Nakajima N Appl Opt; 1990 Aug; 29(23):3369-74. PubMed ID: 20567422 [TBL] [Abstract][Full Text] [Related]
12. Scanning phase-retrieval system with an exponential-filtered probe. Nakajima N Opt Lett; 1996 Dec; 21(23):1933-5. PubMed ID: 19881850 [TBL] [Abstract][Full Text] [Related]
13. Phase retrieval from a high-numerical-aperture intensity distribution by use of an aperture-array filter. Nakajima N J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2172-80. PubMed ID: 19798394 [TBL] [Abstract][Full Text] [Related]
14. Noniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval. Nakajima N Appl Opt; 2010 Jul; 49(21):4100-7. PubMed ID: 20648195 [TBL] [Abstract][Full Text] [Related]
15. First-order intensity and phase statistics of Gaussian speckle produced in the diffraction region. Uozumi J; Asakura T Appl Opt; 1981 Apr; 20(8):1454-66. PubMed ID: 20309331 [TBL] [Abstract][Full Text] [Related]
16. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen. Tian Y; Guo J; Wang R; Wang T Opt Express; 2011 Sep; 19(19):18216-28. PubMed ID: 21935188 [TBL] [Abstract][Full Text] [Related]
18. Direct exit-wave reconstruction from a single defocused image. Morgan AJ; Martin AV; D'Alfonso AJ; Putkunz CT; Allen LJ Ultramicroscopy; 2011; 111(9-10):1455-60. PubMed ID: 21930016 [TBL] [Abstract][Full Text] [Related]
19. Imaging after double passage through a random screen. Mavroidis T; Dainty JC Opt Lett; 1990 Aug; 15(15):857-9. PubMed ID: 19768101 [TBL] [Abstract][Full Text] [Related]