These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21038039)
1. Cluster analysis of infrared spectra of rabbit cortical bone samples during maturation and growth. Kobrina Y; Turunen MJ; Saarakkala S; Jurvelin JS; Hauta-Kasari M; Isaksson H Analyst; 2010 Dec; 135(12):3147-55. PubMed ID: 21038039 [TBL] [Abstract][Full Text] [Related]
2. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980 [TBL] [Abstract][Full Text] [Related]
3. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405 [TBL] [Abstract][Full Text] [Related]
4. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215 [TBL] [Abstract][Full Text] [Related]
5. Age-related changes in organization and content of the collagen matrix in rabbit cortical bone. Turunen MJ; Saarakkala S; Helminen HJ; Jurvelin JS; Isaksson H J Orthop Res; 2012 Mar; 30(3):435-42. PubMed ID: 21882239 [TBL] [Abstract][Full Text] [Related]
6. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy. Miller LM; Carlson CS; Carr GL; Chance MR Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):117-27. PubMed ID: 9551644 [TBL] [Abstract][Full Text] [Related]
7. [FTIR and classification study on the powdered milk with different assist material]. Zhou J; Sun SQ; Li YJ; Zhou Q Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):110-3. PubMed ID: 19385217 [TBL] [Abstract][Full Text] [Related]
8. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647 [TBL] [Abstract][Full Text] [Related]
9. Accretion of bone quantity and quality in the developing mouse skeleton. Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical band-target entropy minimization curve resolution and Pearson VII curve-fitting analysis of cellular protein infrared imaging spectra. Xu W; Chen K; Liang D; Chew W Anal Biochem; 2009 Apr; 387(1):42-53. PubMed ID: 19166806 [TBL] [Abstract][Full Text] [Related]
11. Application of fuzzy c-means clustering in data analysis of metabolomics. Li X; Lu X; Tian J; Gao P; Kong H; Xu G Anal Chem; 2009 Jun; 81(11):4468-75. PubMed ID: 19408956 [TBL] [Abstract][Full Text] [Related]
12. Innovative approach to investigating the microstructure of calcified tissues using specular reflectance Fourier transform-infrared microspectroscopy and discriminant analysis. Nicholson CL; Firth EC; Waterland MR; Jones G; Ganesh S; Stewart RB Anal Chem; 2012 Apr; 84(7):3369-75. PubMed ID: 22413951 [TBL] [Abstract][Full Text] [Related]
14. Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis. Garip S; Yapici E; Ozek NS; Severcan M; Severcan F Analyst; 2010 Dec; 135(12):3233-41. PubMed ID: 21038040 [TBL] [Abstract][Full Text] [Related]
15. NMR metabolic analysis of samples using fuzzy K-means clustering. Cuperlović-Culf M; Belacel N; Culf AS; Chute IC; Ouellette RJ; Burton IW; Karakach TK; Walter JA Magn Reson Chem; 2009 Dec; 47 Suppl 1():S96-104. PubMed ID: 19731396 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of some soluble elastins by means of FT-IR and 2D IR correlation spectroscopy. Popescu MC; Vasile C; Craciunescu O Biopolymers; 2010 Dec; 93(12):1072-84. PubMed ID: 20665685 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Fourier transform infrared spectroscopy for the rapid identification of glycopeptide-intermediate Staphylococcus aureus. Amiali NM; Mulvey MR; Berger-Bächi B; Sedman J; Simor AE; Ismail AA J Antimicrob Chemother; 2008 Jan; 61(1):95-102. PubMed ID: 17962217 [TBL] [Abstract][Full Text] [Related]
18. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation. Kobrina Y; Isaksson H; Sinisaari M; Rieppo L; Brama PA; van Weeren R; Helminen HJ; Jurvelin JS; Saarakkala S J Biomed Opt; 2010; 15(6):067003. PubMed ID: 21198207 [TBL] [Abstract][Full Text] [Related]
19. Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy. Bellisola G; Della Peruta M; Vezzalini M; Moratti E; Vaccari L; Birarda G; Piccinini M; Cinque G; Sorio C Analyst; 2010 Dec; 135(12):3077-86. PubMed ID: 20931110 [TBL] [Abstract][Full Text] [Related]
20. Infrared microscopic functional group mapping and spectral clustering analysis of hypercholesterolemic rabbit liver. Jackson M; Ramjiawan B; Hewko M; Mantsch HH Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):89-98. PubMed ID: 9551641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]