BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

854 related articles for article (PubMed ID: 21038070)

  • 1. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery.
    Wu LY; Di Carlo D; Lee LP
    Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.
    Lin RZ; Chang HY
    Biotechnol J; 2008 Oct; 3(9-10):1172-84. PubMed ID: 18566957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network.
    Kim C; Bang JH; Kim YE; Lee SH; Kang JY
    Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.
    Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T
    Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orderly arrangement of hepatocyte spheroids on a microfabricated chip.
    Fukuda J; Nakazawa K
    Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-size spheroid formation using microfluidic funnels.
    Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T
    Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel.
    Hu G; Li D
    Biomed Microdevices; 2007 Jun; 9(3):315-23. PubMed ID: 17203380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects.
    Lee SA; No da Y; Kang E; Ju J; Kim DS; Lee SH
    Lab Chip; 2013 Sep; 13(18):3529-37. PubMed ID: 23657720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique for the control of spheroid diameter using microfabricated chips.
    Sakai Y; Nakazawa K
    Acta Biomater; 2007 Nov; 3(6):1033-40. PubMed ID: 17689307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.
    Yoon S; Kim JA; Lee SH; Kim M; Park TH
    Lab Chip; 2013 Apr; 13(8):1522-8. PubMed ID: 23426090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chemoresistance in lung cancer with a simple microfluidic device.
    Zhang L; Wang J; Zhao L; Meng Q; Wang Q
    Electrophoresis; 2010 Nov; 31(22):3763-70. PubMed ID: 20949633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.