BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 21038098)

  • 21. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 22. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain.
    Adaikkalam V; Swarup S
    Can J Microbiol; 2005 Mar; 51(3):209-16. PubMed ID: 15920618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of an oxygen-dependent inducible promoter, the Escherichia coli nar promoter, in gram-negative host strains.
    Lee KH; Cho MH; Chung T; Chang HN; Lim SH; Lee J
    Biotechnol Bioeng; 2003 May; 82(3):271-7. PubMed ID: 12599253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of temperature-sensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA-3 affected in PHA accumulation.
    Goff M; Nikodinovic-Runic J; O'Connor KE
    FEMS Microbiol Lett; 2009 Mar; 292(2):297-305. PubMed ID: 19187205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of melanin-overproducing transposon mutants of Pseudomonas putida F6.
    Nikodinovic-Runic J; Martin LB; Babu R; Blau W; O'Connor KE
    FEMS Microbiol Lett; 2009 Sep; 298(2):174-83. PubMed ID: 19624744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism.
    Nichols NN; Mertens JA
    FEMS Microbiol Lett; 2008 Jul; 284(1):52-7. PubMed ID: 18492059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440.
    Rehdorf J; Kirschner A; Bornscheuer UT
    Biotechnol Lett; 2007 Sep; 29(9):1393-8. PubMed ID: 17530181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mutagenesis system utilizing a Tn1722 derivative containing an Escherichia coli-specific vector plasmid: application to Pseudomonas species.
    Tsuda M; Nakazawa T
    Gene; 1993 Dec; 136(1-2):257-62. PubMed ID: 8294012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene.
    Zheng Z; Zhang MJ; Zhang G; Chen GQ
    Antonie Van Leeuwenhoek; 2004 Feb; 85(2):93-101. PubMed ID: 15031653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Raiger-Iustman LJ; Ruiz JA
    FEMS Microbiol Lett; 2008 Jul; 284(2):218-24. PubMed ID: 18498401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria.
    Larsen RA; Wilson MM; Guss AM; Metcalf WW
    Arch Microbiol; 2002 Sep; 178(3):193-201. PubMed ID: 12189420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Cloning genes for biosynthesis of Pseudomonas putida tryptophan in Escherichia coli cells].
    Olekhnovich IN; Fomichev IuK
    Genetika; 1990 Oct; 26(10):1713-9. PubMed ID: 2283047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin.
    Lemuth K; Steuer K; Albermann C
    Microb Cell Fact; 2011 Apr; 10():29. PubMed ID: 21521516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. c-type cytochromes and manganese oxidation in Pseudomonas putida MnB1.
    Caspi R; Tebo BM; Haygood MG
    Appl Environ Microbiol; 1998 Oct; 64(10):3549-55. PubMed ID: 9758766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Integration and expression of polyphosphate kinase gene in Pseudomonas putida].
    Du HW; Wu J; Xiao L; Yang LY; Jiang LJ; Wang XL
    Huan Jing Ke Xue; 2009 Oct; 30(10):3011-5. PubMed ID: 19968123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of periplasmic oxidation of glucose on pyoverdine synthesis in Pseudomonas putida S11.
    Ponraj P; Shankar M; Ilakkiam D; Rajendhran J; Gunasekaran P
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5027-41. PubMed ID: 23392768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning and characterization of the zeaxanthin glucosyltransferase gene (crtX) from the astaxanthin-producing marine bacterium, Paracoccus haeundaensis.
    Seo YB; Choi SS; Nam SW; Lee JH; Kim YT
    J Microbiol Biotechnol; 2009 Dec; 19(12):1542-6. PubMed ID: 20075616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity.
    Park SY; Binkley RM; Kim WJ; Lee MH; Lee SY
    Metab Eng; 2018 Sep; 49():105-115. PubMed ID: 30096424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.