These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2103847)

  • 1. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.
    Baylis C; Harton P; Engels K
    J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient.
    Deng A; Baylis C
    Am J Physiol; 1993 Feb; 264(2 Pt 2):F212-5. PubMed ID: 8447434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II.
    Baylis C; Engels K; Samsell L; Harton P
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F74-8. PubMed ID: 8430832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
    Tolins JP; Raij L
    Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
    Tolins JP; Palmer RM; Moncada S; Raij L
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs.
    Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation.
    Hoffend J; Cavarape A; Endlich K; Steinhausen M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EDRF role in renal function and blood pressure of normal rats and rats with obstructive uropathy.
    Reyes AA; Martin D; Settle S; Klahr S
    Kidney Int; 1992 Feb; 41(2):403-13. PubMed ID: 1552713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
    Scholz H; Kurtz A
    J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
    Perrella MA; Hildebrand FL; Margulies KB; Burnett JC
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats.
    Danielson LA; Conrad KP
    J Clin Invest; 1995 Jul; 96(1):482-90. PubMed ID: 7542284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NG-nitro-L-arginine methyl ester on renal function and blood pressure.
    Lahera V; Salom MG; Miranda-Guardiola F; Moncada S; Romero JC
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F1033-7. PubMed ID: 1750517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat.
    Chevalier RL; Thornhill BA; Gomez RA
    Kidney Int; 1992 Aug; 42(2):400-6. PubMed ID: 1383595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acute nitric oxide inhibition on rat glomerular microcirculation.
    Zatz R; de Nucci G
    Am J Physiol; 1991 Aug; 261(2 Pt 2):F360-3. PubMed ID: 1877654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure natriuresis in rats during blockade of the L-arginine/nitric oxide pathway.
    Johnson RA; Freeman RH
    Hypertension; 1992 Apr; 19(4):333-8. PubMed ID: 1313394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal nerves do not mediate vasoconstrictor responses to acute nitric oxide synthesis inhibition in conscious rats.
    Baylis C; Braith R; Santmyire BR; Engels K
    J Am Soc Nephrol; 1997 Jun; 8(6):887-92. PubMed ID: 9189854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of NO/EDRF for glomerular and tubular function: studies in the isolated perfused rat kidney.
    Radermacher J; Klanke B; Schurek HJ; Stolte HF; Frölich JC
    Kidney Int; 1992 Jun; 41(6):1549-59. PubMed ID: 1501411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide influences blood flow distribution in renovascular hypertension.
    Sigmon DH; Beierwaltes WH
    Hypertension; 1994 Jan; 23(1 Suppl):I34-9. PubMed ID: 8282373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor.
    Tolins JP
    J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.