These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21038864)

  • 1. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS; Kolen'ko YV; Kommareddy KP; Manjubala I; Yoshimura M; Guitián F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3276-84. PubMed ID: 21038864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.
    Horiuchi S; Asaoka K; Tanaka E
    Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of dual-setting calcium phosphate cement using absorbable polymer.
    Thürmer MB; Diehl CE; Brum FJ; dos Santos LA
    Artif Organs; 2013 Nov; 37(11):992-7. PubMed ID: 24236442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity.
    Dagang G; Kewei X; Haoliang S; Yong H
    J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-enriched double-setting calcium phosphate bone cement.
    dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC
    J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair.
    Xu HH; Takagi S; Sun L; Hussain L; Chow LC; Guthrie WF; Yen JH
    J Am Dent Assoc; 2006 Aug; 137(8):1131-8. PubMed ID: 16873330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.
    Alge DL; Chu TM
    J Biomed Mater Res A; 2010 Aug; 94(2):547-55. PubMed ID: 20186776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fibre reinforcement on the mechanical properties of brushite cement.
    Gorst NJ; Perrie Y; Gbureck U; Hutton AL; Hofmann MP; Grover LM; Barralet JE
    Acta Biomater; 2006 Jan; 2(1):95-102. PubMed ID: 16701863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Biomed Mater Res; 1995 Jan; 29(1):25-32. PubMed ID: 7713955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC; Markovic M; Frukhtbeyn SA; Takagi S
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers.
    Burguera EF; Xu HH; Takagi S; Chow LC
    J Biomed Mater Res A; 2005 Dec; 75(4):966-75. PubMed ID: 16123976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis.
    Ginebra MP; Driessens FC; Planell JA
    Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of hydroxyapatite in new calcium phosphate cements.
    Takagi S; Chow LC; Ishikawa K
    Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements.
    Hesaraki S; Zamanian A; Moztarzadeh F
    J Biomed Mater Res A; 2009 Feb; 88(2):314-21. PubMed ID: 18286603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement.
    Chen WC; Lin JH; Ju CP
    J Biomed Mater Res A; 2003 Mar; 64(4):664-71. PubMed ID: 12601778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.