These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 21038869)
1. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869 [TBL] [Abstract][Full Text] [Related]
2. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. Xin X; Zhou X; Wu J; Yao X; Liu Z ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Wang P; Zhai Y; Wang D; Dong S Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599 [TBL] [Abstract][Full Text] [Related]
4. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Zhang F; Cao H; Yue D; Zhang J; Qu M Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries. Wu HB; Lou XW; Hng HH Chemistry; 2012 Feb; 18(7):2094-9. PubMed ID: 22246679 [TBL] [Abstract][Full Text] [Related]
6. One-step hydrothermal synthesis of mesoporous anatase TiO₂ microsphere and interfacial control for enhanced lithium storage performance. Lee KH; Song SW ACS Appl Mater Interfaces; 2011 Sep; 3(9):3697-703. PubMed ID: 21848346 [TBL] [Abstract][Full Text] [Related]
8. Graphene nanosheets as a platform for the 2D ordering of metal oxide nanoparticles: mesoporous 2D aggregate of anatase TiO2 nanoparticles with improved electrode performance. Lee JM; Kim IY; Han SY; Kim TW; Hwang SJ Chemistry; 2012 Oct; 18(43):13800-9. PubMed ID: 22987737 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery. Qiu J; Zhang P; Ling M; Li S; Liu P; Zhao H; Zhang S ACS Appl Mater Interfaces; 2012 Jul; 4(7):3636-42. PubMed ID: 22738305 [TBL] [Abstract][Full Text] [Related]
10. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Shim HW; Lee DK; Cho IS; Hong KS; Kim DW Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576 [TBL] [Abstract][Full Text] [Related]
11. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
12. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375 [TBL] [Abstract][Full Text] [Related]
14. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO(2) anatase. Wagemaker M; Kentgens AP; Mulder FM Nature; 2002 Jul; 418(6896):397-9. PubMed ID: 12140552 [TBL] [Abstract][Full Text] [Related]
15. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Cao FF; Xin S; Guo YG; Wan LJ Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of anatase TiO(2) nanoshuttles by self-sacrificing of titanate nanowires. Wang H; Shao W; Gu F; Zhang L; Lu M; Li C Inorg Chem; 2009 Oct; 48(20):9732-6. PubMed ID: 19764706 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548 [TBL] [Abstract][Full Text] [Related]
18. Construction of TiO₂ hierarchical nanostructures from nanocrystals and their photocatalytic properties. Zhu T; Li J; Wu Q ACS Appl Mater Interfaces; 2011 Sep; 3(9):3448-53. PubMed ID: 21800846 [TBL] [Abstract][Full Text] [Related]
19. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. Wagemaker M; Borghols WJ; van Eck ER; Kentgens AP; Kearley GJ; Mulder FM Chemistry; 2007; 13(7):2023-8. PubMed ID: 17154318 [TBL] [Abstract][Full Text] [Related]
20. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]