These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21038881)

  • 1. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing effect of Zn2+ in native bovine rhodopsin.
    Park PS; Sapra KT; Koliński M; Filipek S; Palczewski K; Muller DJ
    J Biol Chem; 2007 Apr; 282(15):11377-85. PubMed ID: 17303564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
    Park PS
    Pflugers Arch; 2021 Sep; 473(9):1361-1376. PubMed ID: 33591421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors.
    Wen XH; Shen L; Brush RS; Michaud N; Al-Ubaidi MR; Gurevich VV; Hamm HE; Lem J; Dibenedetto E; Anderson RE; Makino CL
    Biophys J; 2009 Feb; 96(3):939-50. PubMed ID: 19186132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin.
    Kawamura S; Gerstung M; Colozo AT; Helenius J; Maeda A; Beerenwinkel N; Park PS; Müller DJ
    Structure; 2013 Mar; 21(3):426-37. PubMed ID: 23434406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes.
    Khan SM; Bolen W; Hargrave PA; Santoro MM; McDowell JH
    Eur J Biochem; 1991 Aug; 200(1):53-9. PubMed ID: 1831759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras.
    Natochin M; Barren B; Ahmad ST; O'Tousa JE; Artemyev NO
    Vision Res; 2006 Dec; 46(27):4575-81. PubMed ID: 16979689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes.
    Senapati S; Poma AB; Cieplak M; Filipek S; Park PSH
    Anal Chem; 2019 Jun; 91(11):7226-7235. PubMed ID: 31074606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes.
    Liang Y; Fotiadis D; Filipek S; Saperstein DA; Palczewski K; Engel A
    J Biol Chem; 2003 Jun; 278(24):21655-21662. PubMed ID: 12663652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments.
    Verma DK; Malhotra H; Woellert T; Calvert PD
    J Biol Chem; 2023 Dec; 299(12):105412. PubMed ID: 37918805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric studies of bovine rod outer segment disk membranes support a monomeric unit for both rhodopsin and opsin.
    Edrington TC; Bennett M; Albert AD
    Biophys J; 2008 Sep; 95(6):2859-66. PubMed ID: 18586850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of more than one retinoid to visual opsins.
    Makino CL; Riley CK; Looney J; Crouch RK; Okada T
    Biophys J; 2010 Oct; 99(7):2366-73. PubMed ID: 20923672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and localization of an exogenous G protein-coupled receptor fused with the rhodopsin C-terminal sequence in the retinal rod cells of knockin mice.
    Kodama T; Imai H; Doi T; Chisaka O; Shichida Y; Fujiyoshi Y
    Exp Eye Res; 2005 Jun; 80(6):859-69. PubMed ID: 15939043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.