These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 21038881)
21. G protein-coupled receptor rhodopsin. Palczewski K Annu Rev Biochem; 2006; 75():743-67. PubMed ID: 16756510 [TBL] [Abstract][Full Text] [Related]
22. The cytoplasmic tail of rhodopsin triggers rapid rod degeneration in kinesin-2 mutants. Feng D; Chen Z; Yang K; Miao S; Xu B; Kang Y; Xie H; Zhao C J Biol Chem; 2017 Oct; 292(42):17375-17386. PubMed ID: 28855254 [TBL] [Abstract][Full Text] [Related]
23. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. Moritz OL; Tam BM; Papermaster DS; Nakayama T J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960 [TBL] [Abstract][Full Text] [Related]
24. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions. Rakshit T; Senapati S; Parmar VM; Sahu B; Maeda A; Park PS Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1691-1702. PubMed ID: 28645515 [TBL] [Abstract][Full Text] [Related]
25. Modulation of molecular interactions and function by rhodopsin palmitylation. Park PS; Sapra KT; Jastrzebska B; Maeda T; Maeda A; Pulawski W; Kono M; Lem J; Crouch RK; Filipek S; Müller DJ; Palczewski K Biochemistry; 2009 May; 48(20):4294-304. PubMed ID: 19348429 [TBL] [Abstract][Full Text] [Related]
26. Protein Sequence and Membrane Lipid Roles in the Activation Kinetics of Bovine and Human Rhodopsins. Szundi I; Funatogawa C; Guo Y; Yan ECY; Kliger DS Biophys J; 2017 Nov; 113(9):1934-1944. PubMed ID: 29117518 [TBL] [Abstract][Full Text] [Related]
27. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
28. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. Sung CH; Makino C; Baylor D; Nathans J J Neurosci; 1994 Oct; 14(10):5818-33. PubMed ID: 7523628 [TBL] [Abstract][Full Text] [Related]
29. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins. Tsukamoto H; Terakita A; Shichida Y J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991 [TBL] [Abstract][Full Text] [Related]
30. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Suda K; Filipek S; Palczewski K; Engel A; Fotiadis D Mol Membr Biol; 2004; 21(6):435-46. PubMed ID: 15764373 [TBL] [Abstract][Full Text] [Related]
31. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal. Bickelmann C; Morrow JM; Müller J; Chang BS Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131 [TBL] [Abstract][Full Text] [Related]
32. Thermal destabilization of rhodopsin and opsin by proteolytic cleavage in bovine rod outer segment disk membranes. Landin JS; Katragadda M; Albert AD Biochemistry; 2001 Sep; 40(37):11176-83. PubMed ID: 11551216 [TBL] [Abstract][Full Text] [Related]
33. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Salom D; Wang B; Dong Z; Sun W; Padayatti P; Jordan S; Salon JA; Palczewski K Biochemistry; 2012 Jan; 51(1):214-24. PubMed ID: 22145929 [TBL] [Abstract][Full Text] [Related]
34. Formation and decay of the arrestin·rhodopsin complex in native disc membranes. Beyrière F; Sommer ME; Szczepek M; Bartl FJ; Hofmann KP; Heck M; Ritter E J Biol Chem; 2015 May; 290(20):12919-28. PubMed ID: 25847250 [TBL] [Abstract][Full Text] [Related]
35. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin. Kazmin R; Rose A; Szczepek M; Elgeti M; Ritter E; Piechnick R; Hofmann KP; Scheerer P; Hildebrand PW; Bartl FJ J Biol Chem; 2015 Aug; 290(33):20117-27. PubMed ID: 26105054 [TBL] [Abstract][Full Text] [Related]
36. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. Senapati S; Park PS Chem Rec; 2023 Oct; 23(10):e202300113. PubMed ID: 37265335 [TBL] [Abstract][Full Text] [Related]
37. The bovine iris-ciliary epithelium expresses components of rod phototransduction. Ghosh S; Salvador-Silva M; Coca-Prados M Neurosci Lett; 2004 Nov; 370(1):7-12. PubMed ID: 15489008 [TBL] [Abstract][Full Text] [Related]
38. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370 [TBL] [Abstract][Full Text] [Related]
39. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC; Birnbach CD; Reh TA J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070 [TBL] [Abstract][Full Text] [Related]
40. Molecular cloning of a rhodopsin gene from salamander rods. Chen N; Ma JX; Corson DW; Hazard ES; Crouch RK Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1907-13. PubMed ID: 8759361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]