These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 21038885)

  • 1. Probing the plasmonic near-field of gold nanocrescent antennas.
    Bukasov R; Ali TA; Nordlander P; Shumaker-Parry JS
    ACS Nano; 2010 Nov; 4(11):6639-50. PubMed ID: 21038885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free biosensing based on single gold nanostars as plasmonic transducers.
    Dondapati SK; Sau TK; Hrelescu C; Klar TA; Stefani FD; Feldmann J
    ACS Nano; 2010 Nov; 4(11):6318-22. PubMed ID: 20942444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T; Du C; Tan LH; Shen Z; Chen H
    Nanoscale; 2011 Apr; 3(4):1575-81. PubMed ID: 21286607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow band UV emission from direct bandgap Si nanoclusters embedded in bulk Si.
    Sahu G; Lenka HP; Mahapatra DP; Rout B; McDaniel FD
    J Phys Condens Matter; 2010 Feb; 22(7):072203. PubMed ID: 21386375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography.
    Lee SW; Lee KS; Ahn J; Lee JJ; Kim MG; Shin YB
    ACS Nano; 2011 Feb; 5(2):897-904. PubMed ID: 21222487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned arrays of au rings for localized surface plasmon resonance.
    Kim S; Jung JM; Choi DG; Jung HT; Yang SM
    Langmuir; 2006 Aug; 22(17):7109-12. PubMed ID: 16893197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone.
    García-Etxarri A; Apell P; Käll M; Aizpurua J
    Opt Express; 2012 Nov; 20(23):25201-12. PubMed ID: 23187337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties of metal-dielectric-metal microcavities in the THz frequency range.
    Todorov Y; Tosetto L; Teissier J; Andrews AM; Klang P; Colombelli R; Sagnes I; Strasser G; Sirtori C
    Opt Express; 2010 Jun; 18(13):13886-907. PubMed ID: 20588522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.