These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21038889)

  • 1. Surface plasmon resonance analysis on interactions of food components with a taste epithelial cell model.
    Miyano M; Yamashita H; Sakurai T; Nakajima K; Ito K; Misaka T; Ishimaru Y; Abe K; Asakura T
    J Agric Food Chem; 2010 Nov; 58(22):11870-5. PubMed ID: 21038889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Interaction between Pesticides and a Cell Membrane Model by Surface Plasmon Resonance Spectroscopy Analysis.
    Moriwaki H; Yamada K; Nakanishi H
    J Agric Food Chem; 2017 Jul; 65(26):5390-5396. PubMed ID: 28602084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel evaluation method for air particles using surface plasmon resonance spectroscopy analysis.
    Tanaka R; Gomi R; Funasaka K; Asakawa D; Nakanishi H; Moriwaki H
    Analyst; 2013 Sep; 138(18):5437-43. PubMed ID: 23885351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinylated lipid bilayer disks as model membranes for biosensor analyses.
    Lundquist A; Hansen SB; Nordström H; Danielson UH; Edwards K
    Anal Biochem; 2010 Oct; 405(2):153-9. PubMed ID: 20599649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-analyte surface plasmon resonance biosensing.
    Homola J; Vaisocherová H; Dostálek J; Piliarik M
    Methods; 2005 Sep; 37(1):26-36. PubMed ID: 16199172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing based on assessment of non-monotonous effect determined by target analyte: case study on pore-forming compounds.
    Gheorghiu M; Olaru A; Tar A; Polonschii C; Gheorghiu E
    Biosens Bioelectron; 2009 Aug; 24(12):3517-23. PubMed ID: 19497729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins.
    Hayashi N; Chen R; Hiraoka M; Ujihara T; Ikezaki H
    J Agric Food Chem; 2010 Jul; 58(14):8351-6. PubMed ID: 20572674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes.
    Wang J; Wang F; Chen H; Liu X; Dong S
    Talanta; 2008 May; 75(3):666-70. PubMed ID: 18585129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput SPR sensor for food safety.
    Piliarik M; Párová L; Homola J
    Biosens Bioelectron; 2009 Jan; 24(5):1399-404. PubMed ID: 18809310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance-enabled mass spectrometry arrays.
    Nedelkov D; Tubbs KA; Nelson RW
    Electrophoresis; 2006 Sep; 27(18):3671-5. PubMed ID: 16915566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging.
    Wang Z; Wilkop T; Han JH; Dong Y; Linman MJ; Cheng Q
    Anal Chem; 2008 Aug; 80(16):6397-404. PubMed ID: 18620431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors.
    Besenicar MP; Anderluh G
    Methods Mol Biol; 2010; 627():191-200. PubMed ID: 20217622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens.
    Oh BK; Lee W; Chun BS; Bae YM; Lee WH; Choi JW
    Biosens Bioelectron; 2005 Mar; 20(9):1847-50. PubMed ID: 15681203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N; Su X; Tjong V; Knoll W
    Biosens Bioelectron; 2007 May; 22(11):2700-6. PubMed ID: 17223028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine.
    Kölzer M; Werth N; Sandhoff K
    FEBS Lett; 2004 Feb; 559(1-3):96-8. PubMed ID: 14960314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing.
    Brändén M; Dahlin S; Höök F
    Chemphyschem; 2008 Dec; 9(17):2480-5. PubMed ID: 19034923
    [No Abstract]   [Full Text] [Related]  

  • 20. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events.
    Dahlin A; Zäch M; Rindzevicius T; Käll M; Sutherland DS; Höök F
    J Am Chem Soc; 2005 Apr; 127(14):5043-8. PubMed ID: 15810838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.