These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21038920)
1. Separation of olive proteins combining a simple extraction method and a selective capillary electrophoresis (CE) approach: application to raw and table olive samples. Montealegre C; Marina ML; García-Ruiz C J Agric Food Chem; 2010 Nov; 58(22):11808-13. PubMed ID: 21038920 [TBL] [Abstract][Full Text] [Related]
2. Effect of cultivar and processing method on the contents of polyphenols in table olives. Romero C; Brenes M; Yousfi K; García P; García A; Garrido A J Agric Food Chem; 2004 Feb; 52(3):479-84. PubMed ID: 14759136 [TBL] [Abstract][Full Text] [Related]
3. Separation of proteins from olive oil by CE: an approximation to the differentiation of monovarietal olive oils. Montealegre C; Marina ML; García-Ruiz C Electrophoresis; 2010 Jul; 31(13):2218-25. PubMed ID: 20593397 [TBL] [Abstract][Full Text] [Related]
4. Separation of olive proteins by capillary gel electrophoresis. Montealegre C; García MC; del Río C; Marina ML; García-Ruiz C Talanta; 2012 Aug; 97():420-4. PubMed ID: 22841102 [TBL] [Abstract][Full Text] [Related]
5. Comparison of three extraction methods used to evaluate phenolic ripening in red grapes. Fragoso S; Mestres M; Busto O; Guasch J J Agric Food Chem; 2010 Apr; 58(7):4071-6. PubMed ID: 20205450 [TBL] [Abstract][Full Text] [Related]
6. Surfactant-assisted pressurized liquid extraction for determination of flavonoids from Costus speciosus by micellar electrokinetic chromatography. Chang YQ; Tan SN; Yong JW; Ge L J Sep Sci; 2011 Feb; 34(4):462-8. PubMed ID: 21254401 [TBL] [Abstract][Full Text] [Related]
7. Method development for analysis of proteins extracted from the leaves of Orthosiphon aristatus. Koay SY; Gam LH J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jul; 879(22):2179-83. PubMed ID: 21689998 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic identification and quantitation of compounds in the polyphenolic fraction of extra-virgin olive oil. Gómez Caravaca AM; Carrasco Pancorbo A; Cañabate Díaz B; Segura Carretero A; Fernández Gutiérrez A Electrophoresis; 2005 Sep; 26(18):3538-51. PubMed ID: 16167367 [TBL] [Abstract][Full Text] [Related]
9. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. Bonoli M; Bendini A; Cerretani L; Lercker G; Toschi TG J Agric Food Chem; 2004 Nov; 52(23):7026-32. PubMed ID: 15537313 [TBL] [Abstract][Full Text] [Related]
10. Use of an enzyme-assisted method to improve protein extraction from olive leaves. Vergara-Barberán M; Lerma-García MJ; Herrero-Martínez JM; Simó-Alfonso EF Food Chem; 2015 Feb; 169():28-33. PubMed ID: 25236194 [TBL] [Abstract][Full Text] [Related]
11. Development of an ultra-high performance liquid chromatography analytical methodology for the profiling of olive (Olea europaea L.) pulp proteins. Esteve C; Del Río C; Marina ML; García MC Anal Chim Acta; 2011 Mar; 690(1):129-34. PubMed ID: 21414446 [TBL] [Abstract][Full Text] [Related]
12. In-vitro gastric cancer prevention by a polyphenol-rich extract from olives through induction of apoptosis. Kountouri AM; Kaliora AC; Koumbi L; Andrikopoulos NK Eur J Cancer Prev; 2009 Feb; 18(1):33-9. PubMed ID: 19077562 [TBL] [Abstract][Full Text] [Related]
13. Classification of olive leaves and pulps according to their cultivar by using protein profiles established by capillary gel electrophoresis. Vergara-Barberán M; Lerma-García MJ; Herrero-Martínez JM; Simó-Alfonso EF Anal Bioanal Chem; 2014 Feb; 406(6):1731-8. PubMed ID: 24390412 [TBL] [Abstract][Full Text] [Related]
14. Rapid desalting and protein recovery with phenol after ammonium sulfate fractionation. Wang W; Liu QJ; Cui H Electrophoresis; 2007 Jul; 28(14):2358-60. PubMed ID: 17577882 [TBL] [Abstract][Full Text] [Related]
15. First ultraperformance liquid chromatography based strategy for profiling intact proteins in complex matrices: application to the evaluation of the performance of olive ( Olea europaea L.) stone proteins for cultivar fingerprinting. Esteve C; Del Río C; Marina ML; García MC J Agric Food Chem; 2010 Jul; 58(14):8176-82. PubMed ID: 20575522 [TBL] [Abstract][Full Text] [Related]
16. Rapid quantification of the phenolic fraction of Spanish virgin olive oils by capillary electrophoresis with UV detection. Carrasco-Pancorbo A; Gómez-Caravaca AM; Cerretani L; Bendini A; Segura-Carretero A; Fernandez-Gutiérrez A J Agric Food Chem; 2006 Oct; 54(21):7984-91. PubMed ID: 17031999 [TBL] [Abstract][Full Text] [Related]
17. Effect of the solvent and the sample preparation on the determination of triterpene compounds in two-phase olive-mill-waste samples. Fernández-Hernández A; Martinez A; Rivas F; García-Mesa JA; Parra A J Agric Food Chem; 2015 May; 63(17):4269-75. PubMed ID: 25773914 [TBL] [Abstract][Full Text] [Related]
18. Identification of Throuba Thassos, a traditional Greek table olive variety, as a nutritional rich source of oleuropein. Zoidou E; Melliou E; Gikas E; Tsarbopoulos A; Magiatis P; Skaltsounis AL J Agric Food Chem; 2010 Jan; 58(1):46-50. PubMed ID: 19957933 [TBL] [Abstract][Full Text] [Related]
19. Olive stone an attractive source of bioactive and valuable compounds. Rodríguez G; Lama A; Rodríguez R; Jiménez A; Guillén R; Fernández-Bolaños J Bioresour Technol; 2008 Sep; 99(13):5261-9. PubMed ID: 18160280 [TBL] [Abstract][Full Text] [Related]
20. Polyphenol changes during fermentation of naturally black olives. Romero C; Brenes M; García P; García A; Garrido A J Agric Food Chem; 2004 Apr; 52(7):1973-9. PubMed ID: 15053538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]