BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21039563)

  • 1. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum.
    Shang Y; Venail J; Mackay S; Bailey PC; Schwinn KE; Jameson PE; Martin CR; Davies KM
    New Phytol; 2011 Jan; 189(2):602-15. PubMed ID: 21039563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum.
    Schwinn K; Venail J; Shang Y; Mackay S; Alm V; Butelli E; Oyama R; Bailey P; Davies K; Martin C
    Plant Cell; 2006 Apr; 18(4):831-51. PubMed ID: 16531495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Painted flowers: Eluta generates pigment patterning in Antirrhinum.
    Moss SMA; Zhou Y; Butelli E; Waite CN; Yeh SM; Cordiner SB; Harris NN; Copsey L; Schwinn KE; Davies KM; Hudson A; Martin C; Albert NW
    New Phytol; 2024 Jul; 243(2):738-752. PubMed ID: 38822654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.
    Hsu CC; Chen YY; Tsai WC; Chen WH; Chen HH
    Plant Physiol; 2015 May; 168(1):175-91. PubMed ID: 25739699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube.
    Zhang B; Qin X; Han Y; Li M; Guo Y
    J Exp Bot; 2024 Jun; 75(11):3401-3411. PubMed ID: 38492236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae.
    Ellis TJ; Field DL
    Ann Bot; 2016 Jun; 117(7):1133-40. PubMed ID: 27192708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A
    Hsu CC; Su CJ; Jeng MF; Chen WH; Chen HH
    Plant Physiol; 2019 Jul; 180(3):1535-1548. PubMed ID: 31088902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the molecular mechanism of colour differentiation among floral segments in orchids.
    Li BJ; Zheng BQ; Wang JY; Tsai WC; Lu HC; Zou LH; Wan X; Zhang DY; Qiao HJ; Liu ZJ; Wang Y
    Commun Biol; 2020 Feb; 3(1):89. PubMed ID: 32111943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the contribution of epidermal cell shape to petal wettability using isogenic Antirrhinum lines.
    Whitney HM; Poetes R; Steiner U; Chittka L; Glover BJ
    PLoS One; 2011 Mar; 6(3):e17576. PubMed ID: 21423738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions.
    Schwinn KE; Boase MR; Bradley JM; Lewis DH; Deroles SC; Martin CR; Davies KM
    Front Plant Sci; 2014; 5():603. PubMed ID: 25414715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
    Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y
    Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why do so many petals have conical epidermal cells?
    Whitney HM; Bennett KM; Dorling M; Sandbach L; Prince D; Chittka L; Glover BJ
    Ann Bot; 2011 Sep; 108(4):609-16. PubMed ID: 21470973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple regulatory mechanisms influence the activity of the transposon, Tam3, of Antirrhinum.
    Uchiyama T; Saito Y; Kuwabara H; Fujino K; Kishima Y; Martin C; Sano Y
    New Phytol; 2008 Jul; 179(2):343-355. PubMed ID: 19086175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered leaf colour is associated with increased superoxide-scavenging activity in aureusidin-producing transgenic plants.
    Shakya R; Ye J; Rommens CM
    Plant Biotechnol J; 2012 Dec; 10(9):1046-55. PubMed ID: 22924954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and cellular patterns in the petal epidermis of Antirrhinum majus: empirical studies.
    Raczyńska-Szajgin M; Nakielski J
    Ann Bot; 2014 Feb; 113(3):403-16. PubMed ID: 24252282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution through genetically controlled allometry space.
    Langlade NB; Feng X; Dransfield T; Copsey L; Hanna AI; Thébaud C; Bangham A; Hudson A; Coen E
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10221-6. PubMed ID: 16009935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus).
    LaFountain AM; McMahon HE; Reid NM; Yuan YW
    New Phytol; 2023 Jan; 237(1):310-322. PubMed ID: 36101514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of shape complexity through tissue conflict resolution.
    Rebocho AB; Southam P; Kennaway JR; Bangham JA; Coen E
    Elife; 2017 Feb; 6():. PubMed ID: 28166865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Identification of First-Order Veins and Corolla Contours in Three-Dimensional Floral Images.
    Wang YH; Hsu HC; Chou WC; Liang CH; Kuo YF
    Front Plant Sci; 2020; 11():549699. PubMed ID: 33042177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photometric stereo for three-dimensional leaf venation extraction.
    Zhang W; Hansen MF; Smith M; Smith L; Grieve B
    Comput Ind; 2018 Jun; 98():56-67. PubMed ID: 29997404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.