BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21039576)

  • 21. Higher photosynthesis, nutrient- and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China.
    Liu MC; Kong DL; Lu XR; Huang K; Wang S; Wang WB; Qu B; Feng YL
    Physiol Plant; 2017 Aug; 160(4):373-382. PubMed ID: 28321883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought limitation of photosynthesis differs between C₃and C₄grass species in a comparative experiment.
    Taylor SH; Ripley BS; Woodward FI; Osborne CP
    Plant Cell Environ; 2011 Jan; 34(1):65-75. PubMed ID: 20825576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.
    Li Y; Gao Y; Xu X; Shen Q; Guo S
    J Exp Bot; 2009; 60(8):2351-60. PubMed ID: 19395387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae.
    Zhang SB; Guan ZJ; Sun M; Zhang JJ; Cao KF; Hu H
    PLoS One; 2012; 7(6):e40080. PubMed ID: 22768224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance.
    Hikosaka K
    J Plant Res; 2004 Dec; 117(6):481-94. PubMed ID: 15583974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.
    Niinemets U; Wright IJ; Evans JR
    J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.
    Diaz-Espejo A; Nicolás E; Fernández JE
    Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaf traits and herbivory rates of tropical tree species differing in successional status.
    Poorter L; van de Plassche M; Willems S; Boot RG
    Plant Biol (Stuttg); 2004 Nov; 6(6):746-54. PubMed ID: 15570481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic.
    Mantlana KB; Arneth A; Veenendaal EM; Wohland P; Wolski P; Kolle O; Wagner M; Lloyd J
    J Exp Bot; 2008; 59(14):3941-52. PubMed ID: 18977748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata.
    Bown HE; Watt MS; Mason EG; Clinton PW; Whitehead D
    Tree Physiol; 2009 Sep; 29(9):1143-51. PubMed ID: 19617215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance.
    Damour G; Vandame M; Urban L
    Tree Physiol; 2009 May; 29(5):675-84. PubMed ID: 19324697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy.
    Montpied P; Granier A; Dreyer E
    J Exp Bot; 2009; 60(8):2407-18. PubMed ID: 19457983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaf and tree age-related changes in leaf ecophysiological traits, nutrient, and adaptive strategies of
    Joshi RK; Mishra A; Gupta R; Garkoti SC
    J Biosci; 2024; 49():. PubMed ID: 38287679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia.
    Kaluthota S; Pearce DW; Evans LM; Letts MG; Whitham TG; Rood SB
    Tree Physiol; 2015 Sep; 35(9):936-48. PubMed ID: 26232786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits.
    Kröber W; Heklau H; Bruelheide H
    Plant Biol (Stuttg); 2015 Mar; 17(2):373-83. PubMed ID: 25441614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What is the proximate cause for size-dependent ecophysiological differences in vascular epiphytes?
    Zotz G; Schmidt G; Mikona C
    Plant Biol (Stuttg); 2011 Nov; 13(6):902-8. PubMed ID: 21973121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of plant size on the ecophysiology of the epiphytic fern Asplenium auritum (Aspleniaceae) from Costa Rica.
    Testo WL; Watkins JE
    Am J Bot; 2012 Nov; 99(11):1840-6. PubMed ID: 23132616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points.
    Givnish TJ; Montgomery RA; Goldstein G
    Am J Bot; 2004 Feb; 91(2):228-46. PubMed ID: 21653379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China.
    Yuan L; Yang ZL; Li SY; Hu H; Huang JL
    Mycorrhiza; 2010 Nov; 20(8):559-68. PubMed ID: 20217434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination and plasticity in leaf anatomical traits of invasive and native vine species.
    Osunkoya OO; Boyne R; Scharaschkin T
    Am J Bot; 2014 Sep; 101(9):1423-36. PubMed ID: 25253703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.