These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21040269)

  • 1. Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus.
    Weaver L; Noyce JO; Michels HT; Keevil CW
    J Appl Microbiol; 2010 Dec; 109(6):2200-5. PubMed ID: 21040269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment.
    Noyce JO; Michels H; Keevil CW
    J Hosp Infect; 2006 Jul; 63(3):289-97. PubMed ID: 16650507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.
    Warnes SL; Caves V; Keevil CW
    Environ Microbiol; 2012 Jul; 14(7):1730-43. PubMed ID: 22176893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces.
    Warnes SL; Keevil CW
    Appl Environ Microbiol; 2016 Jan; 82(7):2132-2136. PubMed ID: 26826226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Adherence to copper and stainless steel metal coupons of common nosocomial bacterial strains].
    Prado J V; Esparza M M; Vidal A R; Durán T C
    Rev Med Chil; 2013 Mar; 141(3):291-7. PubMed ID: 23900318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene.
    Weaver L; Michels HT; Keevil CW
    J Hosp Infect; 2008 Feb; 68(2):145-51. PubMed ID: 18207284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Effects of Rhodomyrtone on Membrane Integrity in Methicillin-Resistant Staphylococcus aureus.
    Sianglum W; Saeloh D; Tongtawe P; Wootipoom N; Indrawattana N; Voravuthikunchai SP
    Microb Drug Resist; 2018 Sep; 24(7):882-889. PubMed ID: 29215320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning.
    Airey P; Verran J
    J Hosp Infect; 2007 Nov; 67(3):271-7. PubMed ID: 17950486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory.
    Wheeldon LJ; Worthington T; Lambert PA; Hilton AC; Lowden CJ; Elliott TS
    J Antimicrob Chemother; 2008 Sep; 62(3):522-5. PubMed ID: 18544601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens.
    Eser OK; Ergin A; Hascelik G
    Curr Microbiol; 2015 Aug; 71(2):291-5. PubMed ID: 26044991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion of water stressed Helicobacter pylori to abiotic surfaces.
    Azevedo NF; Pacheco AP; Keevil CW; Vieira MJ
    J Appl Microbiol; 2006 Sep; 101(3):718-24. PubMed ID: 16907822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a dry inoculum deposition on the efficacy of copper-based antimicrobial surfaces.
    McDonald M; Wesgate R; Rubiano M; Holah J; Denyer SP; Jermann C; Maillard JY
    J Hosp Infect; 2020 Nov; 106(3):465-472. PubMed ID: 32810570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA).
    Aruldass CA; Masalamany SRL; Venil CK; Ahmad WA
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5164-5180. PubMed ID: 28361404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.
    Whitlock BD; Smith SW
    J Hosp Infect; 2016 Oct; 94(2):182-4. PubMed ID: 27255392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators.
    Pottage T; Macken S; Walker JT; Bennett AM
    J Hosp Infect; 2012 Jan; 80(1):41-5. PubMed ID: 22137066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antimicrobial and antibiofilm activities of copper(II) complexes.
    Beeton ML; Aldrich-Wright JR; Bolhuis A
    J Inorg Biochem; 2014 Nov; 140():167-72. PubMed ID: 25124857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination.
    Wilks SA; Michels HT; Keevil CW
    Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of copper oxide nanoparticles for antimicrobial applications.
    Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP
    Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.