These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21040541)

  • 1. Two-stage, self-cycling process for the production of bacteriophages.
    Sauvageau D; Cooper DG
    Microb Cell Fact; 2010 Nov; 9():81. PubMed ID: 21040541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-cycling operation increases productivity of recombinant protein in Escherichia coli.
    Storms ZJ; Brown T; Sauvageau D; Cooper DG
    Biotechnol Bioeng; 2012 Sep; 109(9):2262-70. PubMed ID: 22407770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production.
    Mancuso F; Shi J; Malik DJ
    Viruses; 2018 Oct; 10(10):. PubMed ID: 30275405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation.
    Wang J; Chae M; Bressler DC; Sauvageau D
    Biotechnol Biofuels; 2020; 13():14. PubMed ID: 31998407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized populations of Escherichia coli using simplified self-cycling fermentation.
    Sauvageau D; Storms Z; Cooper DG
    J Biotechnol; 2010 Aug; 149(1-2):67-73. PubMed ID: 20599574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.
    Wang J; Chae M; Sauvageau D; Bressler DC
    Biotechnol Biofuels; 2017; 10():193. PubMed ID: 28785309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of synchrony and productivity in self-cycling fermentation of engineered yeast producing shikimic acid.
    Tan Y; Agustin RVC; Stein LY; Sauvageau D
    Biotechnol Rep (Amst); 2021 Dec; 32():e00691. PubMed ID: 34934640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage Production in Bioreactors.
    Agboluaje M; Sauvageau D
    Methods Mol Biol; 2018; 1693():173-193. PubMed ID: 29119441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of self-cycling fermentation long- and short-cycle schemes on Saccharomyces cerevisiae and Escherichia coli.
    Tan Y; Stein LY; Sauvageau D
    Sci Rep; 2022 Aug; 12(1):13154. PubMed ID: 35915208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation.
    Tan Y; Stein LY; Sauvageau D
    Bioprocess Biosyst Eng; 2023 Jul; 46(7):969-980. PubMed ID: 37160768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of urethane and of hydrostatic pressure on the growth of bacteriophages T2, T5, T6, and T7.
    FOSTER RA; JOHNSON FH
    J Gen Physiol; 1951 May; 34(5):529-50. PubMed ID: 14832436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the rate of respiration to monitor events in the infection of Escherichia coli cultures by bacteriophage T4.
    Sauvageau D; Allain B; Cooper DG
    Biotechnol Prog; 2010; 26(3):865-71. PubMed ID: 20039436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells.
    PUCK TT; LEE HH
    J Exp Med; 1955 Feb; 101(2):151-75. PubMed ID: 13233443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli.
    Łoś M; Golec P; Łoś JM; Weglewska-Jurkiewicz A; Czyz A; Wegrzyn A; Wegrzyn G; Neubauer P
    BMC Biotechnol; 2007 Feb; 7():13. PubMed ID: 17324284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biological characteristics and genomic information of a bacteriophage against pan-drug resistant
    Qi ZY; Yang SY; Dong SW; Zhao FF; Qin JH; Xiang J
    Zhonghua Shao Shang Za Zhi; 2020 Jan; 36(1):14-23. PubMed ID: 32023713
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of dilution rate on productivity of continuous bacteriophage production in cellstat.
    Nabergoj D; Kuzmić N; Drakslar B; Podgornik A
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3649-3661. PubMed ID: 29516149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.
    Wang C; Sauvageau D; Elias A
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1128-38. PubMed ID: 26741170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into scalable and efficient enterotoxigenic Escherichia coli bacteriophage production.
    Wiebe KG; Cook BWM; Lightly TJ; Court DA; Theriault SS
    Sci Rep; 2024 Feb; 14(1):3618. PubMed ID: 38351153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages.
    Dunne M; Hupfeld M; Klumpp J; Loessner MJ
    Viruses; 2018 Jul; 10(8):. PubMed ID: 30060549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.