BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21040764)

  • 1. A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity.
    Wang K; Jia Q; Yuan J; Li S
    Int J Pharm; 2011 Feb; 404(1-2):176-9. PubMed ID: 21040764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems.
    Liu H; Venkatraman SS
    J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives.
    Couffin-Hoarau AC; Motulsky A; Delmas P; Leroux JC
    Pharm Res; 2004 Mar; 21(3):454-7. PubMed ID: 15070096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the potential of N-methyl pyrrolidone as a cosurfactant in the microemulsion systems.
    Bachhav YG; Date AA; Patravale VB
    Int J Pharm; 2006 Dec; 326(1-2):186-9. PubMed ID: 16949777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection.
    Dai M; Bai L; Zhang H; Ma Q; Luo R; Lei F; Fei Q; He N
    Int J Pharm; 2020 Feb; 576():119027. PubMed ID: 31953090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.
    Boddu SH; Bonam SP; Wei Y; Alexander K
    Int J Pharm Compd; 2014; 18(3):256-61. PubMed ID: 25306775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.
    Srichan T; Phaechamud T
    AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems.
    Liu H; Venkatraman SS
    J Pharm Sci; 2012 May; 101(5):1783-93. PubMed ID: 22318766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process.
    Kempe S; Metz H; Mäder K
    J Control Release; 2008 Sep; 130(3):220-5. PubMed ID: 18611421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring release of ketoprofen enantiomers from biodegradable poly(D,L-lactide-co-glycolide) injectable implants.
    Wang SH; Liang ZH; Zeng S
    Int J Pharm; 2007 Jun; 337(1-2):102-8. PubMed ID: 17296274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity.
    Jones DS; Muldoon BC; Woolfson AD; Sanderson FD
    J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization.
    Yang Y; Xu L; Gao Y; Wang Q; Che X; Li S
    Drug Dev Ind Pharm; 2012 May; 38(5):550-6. PubMed ID: 22420863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility improvement of drugs using N-methyl pyrrolidone.
    Sanghvi R; Narazaki R; Machatha SG; Yalkowsky SH
    AAPS PharmSciTech; 2008; 9(2):366-76. PubMed ID: 18431671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study.
    Liu Y; Kemmer A; Keim K; Curdy C; Petersen H; Kissel T
    Eur J Pharm Biopharm; 2010 Oct; 76(2):222-9. PubMed ID: 20650316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.
    Ueda H; Hacker MC; Haesslein A; Jo S; Ammon DM; Borazjani RN; Kunzler JF; Salamone JC; Mikos AG
    J Biomed Mater Res A; 2007 Dec; 83(3):656-66. PubMed ID: 17514745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.