BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 21040848)

  • 1. SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming.
    Burgalossi A; Jung S; Meyer G; Jockusch WJ; Jahn O; Taschenberger H; O'Connor VM; Nishiki T; Takahashi M; Brose N; Rhee JS
    Neuron; 2010 Nov; 68(3):473-87. PubMed ID: 21040848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission.
    Schupp M; Malsam J; Ruiter M; Scheutzow A; Wierda KD; Söllner TH; Sørensen JB
    J Neurosci; 2016 Nov; 36(47):11865-11880. PubMed ID: 27881774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNARE function analyzed in synaptobrevin/VAMP knockout mice.
    Schoch S; Deák F; Königstorfer A; Mozhayeva M; Sara Y; Südhof TC; Kavalali ET
    Science; 2001 Nov; 294(5544):1117-22. PubMed ID: 11691998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.
    Sara Y; Virmani T; Deák F; Liu X; Kavalali ET
    Neuron; 2005 Feb; 45(4):563-73. PubMed ID: 15721242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles.
    Augustin I; Rosenmund C; Südhof TC; Brose N
    Nature; 1999 Jul; 400(6743):457-61. PubMed ID: 10440375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal.
    Sakaba T
    Neuron; 2008 Feb; 57(3):406-19. PubMed ID: 18255033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release.
    Groffen AJ; Martens S; Díez Arazola R; Cornelisse LN; Lozovaya N; de Jong AP; Goriounova NA; Habets RL; Takai Y; Borst JG; Brose N; McMahon HT; Verhage M
    Science; 2010 Mar; 327(5973):1614-8. PubMed ID: 20150444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins.
    Jockusch WJ; Speidel D; Sigler A; Sørensen JB; Varoqueaux F; Rhee JS; Brose N
    Cell; 2007 Nov; 131(4):796-808. PubMed ID: 18022372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VAMP4 Maintains a Ca
    Lin PY; Chanaday NL; Horvath PM; Ramirez DMO; Monteggia LM; Kavalali ET
    J Neurosci; 2020 Jul; 40(28):5389-5401. PubMed ID: 32532887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.
    Zimmermann J; Trimbuch T; Rosenmund C
    J Neurophysiol; 2014 Sep; 112(6):1559-65. PubMed ID: 24944211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis.
    Tang J; Maximov A; Shin OH; Dai H; Rizo J; Südhof TC
    Cell; 2006 Sep; 126(6):1175-87. PubMed ID: 16990140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons.
    Maher BJ; Mackinnon RL; Bai J; Chapman ER; Kelly PT
    J Neurophysiol; 2005 Jan; 93(1):178-88. PubMed ID: 15604462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release.
    Calakos N; Schoch S; Südhof TC; Malenka RC
    Neuron; 2004 Jun; 42(6):889-96. PubMed ID: 15207234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms determining conserved properties of short-term synaptic depression revealed in NSF and SNAP-25 conditional mutants.
    Kawasaki F; Ordway RW
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14658-63. PubMed ID: 19706552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
    Deák F; Shin OH; Kavalali ET; Südhof TC
    J Neurosci; 2006 Jun; 26(25):6668-76. PubMed ID: 16793874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity.
    Jorquera RA; Huntwork-Rodriguez S; Akbergenova Y; Cho RW; Littleton JT
    J Neurosci; 2012 Dec; 32(50):18234-45. PubMed ID: 23238737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release.
    Maximov A; Südhof TC
    Neuron; 2005 Nov; 48(4):547-54. PubMed ID: 16301172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A common molecular basis for membrane docking and functional priming of synaptic vesicles.
    Siksou L; Varoqueaux F; Pascual O; Triller A; Brose N; Marty S
    Eur J Neurosci; 2009 Jul; 30(1):49-56. PubMed ID: 19558619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V-ATPase membrane sector associates with synaptobrevin to modulate neurotransmitter release.
    Di Giovanni J; Boudkkazi S; Mochida S; Bialowas A; Samari N; Lévêque C; Youssouf F; Brechet A; Iborra C; Maulet Y; Moutot N; Debanne D; Seagar M; El Far O
    Neuron; 2010 Jul; 67(2):268-79. PubMed ID: 20670834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.