These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. Franzoso G; Zysset PK J Biomech Eng; 2009 Feb; 131(2):021001. PubMed ID: 19102560 [TBL] [Abstract][Full Text] [Related]
3. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
4. Accretion of bone quantity and quality in the developing mouse skeleton. Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847 [TBL] [Abstract][Full Text] [Related]
5. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215 [TBL] [Abstract][Full Text] [Related]
6. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone. Paietta RC; Campbell SE; Ferguson VL J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970 [TBL] [Abstract][Full Text] [Related]
7. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties. Chattah NL; Sharir A; Weiner S; Shahar R Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167 [TBL] [Abstract][Full Text] [Related]
8. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. Dong XN; Guo XE J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934 [TBL] [Abstract][Full Text] [Related]
9. Effect of microstructure on the mechanical properties of Haversian cortical bone. Hoc T; Henry L; Verdier M; Aubry D; Sedel L; Meunier A Bone; 2006 Apr; 38(4):466-74. PubMed ID: 16332459 [TBL] [Abstract][Full Text] [Related]
10. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals. Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138 [TBL] [Abstract][Full Text] [Related]
11. Multi-level femoral morphology and mechanical properties of rats of different ages. Zhang R; Gong H; Zhu D; Ma R; Fang J; Fan Y Bone; 2015 Jul; 76():76-87. PubMed ID: 25857690 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the mechanical properties of rat bone under simulated microgravity using nanoindentation. Sun LW; Fan YB; Li DY; Zhao F; Xie T; Yang X; Gu ZT Acta Biomater; 2009 Nov; 5(9):3506-11. PubMed ID: 19450712 [TBL] [Abstract][Full Text] [Related]
13. Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. Norman J; Shapter JG; Short K; Smith LJ; Fazzalari NL J Biomed Mater Res A; 2008 Oct; 87(1):196-202. PubMed ID: 18085652 [TBL] [Abstract][Full Text] [Related]
14. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. Isaksson H; Harjula T; Koistinen A; Iivarinen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ J Orthop Res; 2010 Dec; 28(12):1626-33. PubMed ID: 20540098 [TBL] [Abstract][Full Text] [Related]
15. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405 [TBL] [Abstract][Full Text] [Related]
16. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. Katsamenis OL; Chong HM; Andriotis OG; Thurner PJ J Mech Behav Biomed Mater; 2013 Jan; 17():152-65. PubMed ID: 23131790 [TBL] [Abstract][Full Text] [Related]
17. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. Dong XN; Guo XE J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580 [TBL] [Abstract][Full Text] [Related]
18. Effects of treatment of ovariectomized adult rhesus monkeys with parathyroid hormone 1-84 for 16 months on trabecular and cortical bone structure and biomechanical properties of the proximal femur. Fox J; Miller MA; Recker RR; Turner CH; Smith SY Calcif Tissue Int; 2007 Jul; 81(1):53-63. PubMed ID: 17551766 [TBL] [Abstract][Full Text] [Related]
19. Bone intrinsic material properties in three inbred mouse strains. Akhter MP; Fan Z; Rho JY Calcif Tissue Int; 2004 Nov; 75(5):416-20. PubMed ID: 15592798 [TBL] [Abstract][Full Text] [Related]
20. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]