These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21040968)

  • 1. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.
    Filion TM; Xu J; Prasad ML; Song J
    Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of POSS Type on the Shape Memory Properties of Epoxy-Based Nanocomposites.
    Bram AI; Gouzman I; Bolker A; Eliaz N; Verker R
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32937814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically Crosslinked Amphiphilic Degradable Shape Memory Polymer Nanocomposites with Readily Tuned Physical, Mechanical, and Biological Properties.
    Xu X; Skelly JD; Song J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2693-2704. PubMed ID: 36607181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.
    Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C
    J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration.
    Gomez-Sanchez C; Kowalczyk T; Ruiz De Eguino G; Lopez-Arraiza A; Infante A; Rodriguez CI; Kowalewski TA; Sarrionandia M; Aurrekoetxea J
    J Biomater Sci Polym Ed; 2014; 25(8):802-25. PubMed ID: 24754323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding.
    Yu J; Qiu Z
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.
    Oseni AO; Butler PE; Seifalian AM
    J Tissue Eng Regen Med; 2015 Nov; 9(11):E27-38. PubMed ID: 23576328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.
    Solouk A; Cousins BG; Mirahmadi F; Mirzadeh H; Nadoushan MR; Shokrgozar MA; Seifalian AM
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():400-8. PubMed ID: 25492004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold.
    Crowley C; Klanrit P; Butler CR; Varanou A; Platé M; Hynds RE; Chambers RC; Seifalian AM; Birchall MA; Janes SM
    Biomaterials; 2016 Mar; 83():283-93. PubMed ID: 26790147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing tissue integration and angiogenesis of a novel nanocomposite polymer using plasma surface polymerisation, an in vitro and in vivo study.
    Griffin MF; Palgrave RG; Seifalian AM; Butler PE; Kalaskar DM
    Biomater Sci; 2016 Jan; 4(1):145-58. PubMed ID: 26474453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS).
    Ghanbari H; Cousins BG; Seifalian AM
    Macromol Rapid Commun; 2011 Jul; 32(14):1032-46. PubMed ID: 21598339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticalcification Potential of POSS-PEG Hybrid Hydrogel as a Scaffold Material for the Development of Synthetic Heart Valve Leaflets.
    Guo R; Zhou Y; Liu S; Li C; Lu C; Yang G; Nie J; Wang F; Dong NG; Shi J
    ACS Appl Bio Mater; 2021 Mar; 4(3):2534-2543. PubMed ID: 35014371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering.
    Sitharaman B; Shi X; Walboomers XF; Liao H; Cuijpers V; Wilson LJ; Mikos AG; Jansen JA
    Bone; 2008 Aug; 43(2):362-370. PubMed ID: 18541467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.