BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21041068)

  • 1. Surfactant enhanced lipase containing films characterized by confocal laser scanning microscopy.
    Jayawardena MB; Yee LH; Rainbow IJ; Bergquist P; Such C; Steinberg PD; Kjelleberg SJ
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):291-6. PubMed ID: 21041068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and mobility of a lipase at a hydrophobic surface in the presence of surfactants.
    Sonesson AW; Elofsson UM; Brismar H; Callisen TH
    Langmuir; 2006 Jun; 22(13):5810-7. PubMed ID: 16768512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications of surfactant distributions and surface morphologies in latex films due to moisture exposure.
    Xu GH; Dong J; Severtson SJ; Houtman CJ; Gwin LE
    J Phys Chem B; 2009 Jul; 113(30):10189-95. PubMed ID: 19572658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of Humicola lanuginosa lipase on mixed monomolecular films of tricaprylin and polyethylene glycol stearate.
    Ivanova T; Mircheva K; Dobreva G; Panaiotov I; Proust JE; Verger R
    Colloids Surf B Biointerfaces; 2008 May; 63(1):91-100. PubMed ID: 18178069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier.
    Sörensen MH; Ng JB; Bergström L; Alberius PC
    J Colloid Interface Sci; 2010 Mar; 343(1):359-65. PubMed ID: 20022021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of Thermomyces lanuginosus lipase on a trimyristin substrate surface.
    Sonesson AW; Brismar H; Callisen TH; Elofsson UM
    Langmuir; 2007 Feb; 23(5):2706-13. PubMed ID: 17261037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase.
    Martinelle M; Holmquist M; Hult K
    Biochim Biophys Acta; 1995 Oct; 1258(3):272-6. PubMed ID: 7548197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality.
    Palomo JM; Fuentes M; Fernández-Lorente G; Mateo C; Guisan JM; Fernández-Lafuente R
    Biomacromolecules; 2003; 4(1):1-6. PubMed ID: 12523838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface fluorescence resonance energy transfer studies on interfacial adsorption of Thermomyces (humicola) lanuginosa lipase, using monomolecular films of cis-parinaric acid.
    Yapoudjian S; Ivanova M; Douchet I; Zénatti A; Sentis M; Marine W; Svendsen A; Verger R
    Biopolymers; 2002 Oct; 65(2):121-8. PubMed ID: 12209462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique.
    Marquez M; Grady BP
    Langmuir; 2004 Dec; 20(25):10998-1004. PubMed ID: 15568851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable colloidal dispersions of a lipase-perfluoropolyether complex in liquid and supercritical carbon dioxide.
    Adkins SS; Hobbs HR; Benaissi K; Johnston KP; Poliakoff M; Thomas NR
    J Phys Chem B; 2008 Apr; 112(15):4760-9. PubMed ID: 18363394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the distribution of nonylphenol ethoxylate surfactants in water-based pressure-sensitive adhesive films using atomic-force and confocal Raman microscopy.
    Xu GH; Dong J; Zhang J; Severtson SJ; Houtman CJ; Gwin LE
    J Phys Chem B; 2008 Sep; 112(38):11907-14. PubMed ID: 18767777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic resolution to (-)-ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase.
    Lehmann SV; Breinholt J; Bury PS; Nielsen TE
    Chirality; 2000 Jul; 12(7):568-73. PubMed ID: 10861957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the relationship between interfacial concentrations and lipase activity in cationic W/O microemulsions: a quantitative study by chemical trapping.
    Dasgupta A; Das D; Das PK
    Langmuir; 2007 Apr; 23(8):4137-43. PubMed ID: 17348698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of microparticle coating quality by confocal laser scanning microscopy (CLSM).
    Depypere F; Van Oostveldt P; Pieters JG; Dewettinck K
    Eur J Pharm Biopharm; 2009 Sep; 73(1):179-86. PubMed ID: 19406233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS).
    Sonesson AW; Blom H; Hassler K; Elofsson UM; Callisen TH; Widengren J; Brismar H
    J Colloid Interface Sci; 2008 Jan; 317(2):449-57. PubMed ID: 17950302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic strength-dependent denaturation of Thermomyces lanuginosus lipase induced by SDS.
    Fano M; van de Weert M; Moeller EH; Kruse NA; Frokjaer S
    Arch Biochem Biophys; 2011 Feb; 506(1):92-8. PubMed ID: 21093408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy.
    Zhang Z; Zou S; Vancso GJ; Grijpma DW; Feijen J
    Biomacromolecules; 2005; 6(6):3404-9. PubMed ID: 16283772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.