BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21041135)

  • 1. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic mode extraction of ultrasonic guided waves using synchrosqueezed wavelet transform.
    Liu Z; Xu K; Li D; Ta D; Wang W
    Ultrasonics; 2019 Nov; 99():105948. PubMed ID: 31323561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm.
    Song X; Ta D; Wang W
    Ultrasound Med Biol; 2011 Oct; 37(10):1704-13. PubMed ID: 21924208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
    Tran TN; Nguyen KC; Sacchi MD; Le LH
    Ultrasound Med Biol; 2014 Nov; 40(11):2715-27. PubMed ID: 25282483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and analysis of multimode guided waves in tibia cortical bone.
    Ta DA; Huang K; Wang WQ; Wang YY; Le LH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e279-84. PubMed ID: 16846626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A base-sequence-modulated Golay code improves the excitation and measurement of ultrasonic guided waves in long bones.
    Song X; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2580-3. PubMed ID: 23192823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring guided waves in long bones: modeling and experiments in free and immersed plates.
    Moilanen P; Nicholson PH; Kilappa V; Cheng S; Timonen J
    Ultrasound Med Biol; 2006 May; 32(5):709-19. PubMed ID: 16677930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coded excitation of ultrasonic guided waves in long bone fracture assessment.
    Zhang H; Wu S; Ta D; Xu K; Wang W
    Ultrasonics; 2014 Jul; 54(5):1203-9. PubMed ID: 24289899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrogram decomposition of ultrasonic guided waves for cortical thickness assessment using basis learning.
    Gu M; Li Y; Tran TNHT; Song X; Shi Q; Xu K; Ta D
    Ultrasonics; 2022 Mar; 120():106665. PubMed ID: 34968990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones.
    Zhang Z; Liu D; Deng M; Ta D; Wang W
    Ultrasound Med Biol; 2014 Jul; 40(7):1660-70. PubMed ID: 24726796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion characteristics of the flexural wave assessed using low frequency (50-150kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms.
    Kassou K; Remram Y; Laugier P; Minonzio JG
    Ultrasonics; 2017 Nov; 81():1-9. PubMed ID: 28570855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.
    Zheng R; Le LH; Sacchi MD; Lou E
    Ultrasound Med Biol; 2015 Nov; 41(11):2955-65. PubMed ID: 26299684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer.
    Kilappa V; Xu K; Moilanen P; Heikkola E; Ta D; Timonen J
    Ultrasound Med Biol; 2013 Jul; 39(7):1223-32. PubMed ID: 23643059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.