These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 21041227)

  • 1. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.
    Barbier M; Vasilopoulos P; Peeters FM
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5499-524. PubMed ID: 21041227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic transport through graphene nanostructures of velocity and potential barriers.
    Krstajić PM; Vasilopoulos P
    J Phys Condens Matter; 2011 Apr; 23(13):135302. PubMed ID: 21403236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exotic electronic properties in Thue-Morse graphene superlattices.
    Xu Y; Zou J; Jin G
    J Phys Condens Matter; 2013 Jun; 25(24):245301. PubMed ID: 23709474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kronig-Penney model of scalar and vector potentials in graphene.
    Masir MR; Vasilopoulos P; Peeters FM
    J Phys Condens Matter; 2010 Nov; 22(46):465302. PubMed ID: 21403363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Touching points in the energy band structure of bilayer graphene superlattices.
    Pham CH; Nguyen VL
    J Phys Condens Matter; 2014 Oct; 26(42):425502. PubMed ID: 25274067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport properties through graphene-based fractal and periodic magnetic barriers.
    Sun L; Fang C; Song Y; Guo Y
    J Phys Condens Matter; 2010 Nov; 22(44):445303. PubMed ID: 21403344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band structures of bilayer graphene superlattices.
    Killi M; Wu S; Paramekanti A
    Phys Rev Lett; 2011 Aug; 107(8):086801. PubMed ID: 21929188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductance and shot noise in strained bilayer graphene.
    Pearce AJ; Cavaliere F; Mariani E
    J Phys Condens Matter; 2013 Sep; 25(37):375301. PubMed ID: 23963478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene.
    Mao Y; Zhong J
    Nanotechnology; 2008 May; 19(20):205708. PubMed ID: 21825751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renormalization group aspects of graphene.
    Vozmediano MA
    Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1946):2625-42. PubMed ID: 21646270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical tuning of transport properties of topological insulator ultrathin films.
    Li H; Shao JM; Zhang HB; Yang GW
    Nanoscale; 2014 Mar; 6(6):3127-37. PubMed ID: 24496553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermi Velocity Reduction of Dirac Fermions around the Brillouin Zone Center in In
    Wang Z; Hao Z; Yu Y; Wang Y; Kumar S; Xie X; Tong M; Deng K; Hao YJ; Ma XM; Zhang K; Liu C; Ma M; Mei J; Wang G; Schwier EF; Shimada K; Xu F; Liu C; Huang W; Wang J; Jiang T; Chen C
    Adv Mater; 2021 Apr; 33(17):e2007503. PubMed ID: 33739570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of symmetric and asymmetric Dirac points under periodic electric and vector potentials in ABA-trilayer graphene superlattice.
    Uddin S; Hussain A; Rashid AU; Ullah K; Oh WC
    RSC Adv; 2024 Aug; 14(37):27162-27173. PubMed ID: 39193273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanophysics in graphene: neutrino physics in quantum rings and superlattices.
    Fertig HA; Brey L
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5483-97. PubMed ID: 21041226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massless Dirac fermions in a graphene superlattice: a T-matrix approach.
    Pham CH; Nguyen HC; Nguyen VL
    J Phys Condens Matter; 2010 Oct; 22(42):425501. PubMed ID: 21403310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hall conductance in graphene with point defects.
    İslamoğlu S; Oktel MÖ; Gülseren O
    J Phys Condens Matter; 2013 Feb; 25(5):055302. PubMed ID: 23300159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of graphene p-n superlattices on Pb quantum wedged islands.
    Zhu W; Chen H; Bevan KH; Zhang Z
    ACS Nano; 2011 May; 5(5):3707-13. PubMed ID: 21473606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.