These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21042646)

  • 1. Cubic and rhombohedral heterobimetallic networks constructed from uranium, transition metals, and phosphonoacetate: new methods for constructing porous materials.
    Alsobrook AN; Hauser BG; Hupp JT; Alekseev EV; Depmeier W; Albrecht-Schmitt TE
    Chem Commun (Camb); 2010 Dec; 46(48):9167-9. PubMed ID: 21042646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonoacetate as a ligand for constructing layered and framework alkali metal uranyl compounds.
    Alsobrook AN; Albrecht-Schmitt TE
    Inorg Chem; 2009 Dec; 48(23):11079-84. PubMed ID: 19883107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural variation within homometallic uranium(VI) carboxyphosphonates: in situ ligand synthesis, directed assembly, metal-ligand coordination and hydrogen bonding.
    Knope KE; Cahill CL
    Inorg Chem; 2008 Sep; 47(17):7660-72. PubMed ID: 18671342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic trends in actinide phosphonates: divergence and convergence between thorium, uranium, neptunium, and plutonium systems.
    Nelson AG; Bray TH; Stanley FA; Albrecht-Schmitt TE
    Inorg Chem; 2009 May; 48(10):4530-5. PubMed ID: 19348443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homometallic uranium(VI) phosphonoacetates containing interlayer dipyridines.
    Knope KE; Cahill CL
    Inorg Chem; 2009 Jul; 48(14):6845-51. PubMed ID: 19545146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two- and three-dimensional open-framework uranium arsenates: synthesis, structure, and characterization.
    Rao VK; Bharathi K; Prabhu R; Chandra M; Natarajan S
    Inorg Chem; 2010 Mar; 49(6):2931-47. PubMed ID: 20151643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deviation between the chemistry of Ce(IV) and Pu(IV) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates.
    Diwu J; Wang S; Good JJ; DiStefano VH; Albrecht-Schmitt TE
    Inorg Chem; 2011 Jun; 50(11):4842-50. PubMed ID: 21517014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic coordination networks responsive to CO2, moisture, and thermal stimuli: porous cobalt(II) and zinc(II) fluoropyrimidinolates.
    Galli S; Masciocchi N; Tagliabue G; Sironi A; Navarro JA; Salas JM; Mendez-LiƱan L; Domingo M; Perez-Mendoza M; Barea E
    Chemistry; 2008; 14(32):9890-901. PubMed ID: 18846600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks.
    Diwu J; Albrecht-Schmitt TE
    Chem Commun (Camb); 2012 Apr; 48(32):3827-9. PubMed ID: 22437257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-, two-, and one-dimensional metal phosphonates based on [hydroxy(4-pyridyl)methyl]phosphonate: M{(4-C5H4N)CH(OH)PO3}(H2O) (M = Ni, Cd) and Gd{(4-C5H4N)CH(OH)P(OH)O2}3.6H2O.
    Cao DK; Li YZ; Song Y; Zheng LM
    Inorg Chem; 2005 May; 44(10):3599-604. PubMed ID: 15877444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First row divalent transition metal complexes of aryl-appended tris((pyridyl)methyl)amine ligands: syntheses, structures, electrochemistry, and hydroxamate binding properties.
    Makowska-Grzyska MM; Szajna E; Shipley C; Arif AM; Mitchell MH; Halfen JA; Berreau LM
    Inorg Chem; 2003 Nov; 42(23):7472-88. PubMed ID: 14606843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses, structures, and ion-exchange properties of the three-dimensional framework uranyl gallium phosphates, Cs4[(UO2)2(GaOH)2(PO4)4].H2O and Cs[UO2Ga(PO4)2].
    Shvareva TY; Sullens TA; Shehee TC; Albrecht-Schmitt TE
    Inorg Chem; 2005 Jan; 44(2):300-5. PubMed ID: 15651876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Series of 2D and 3D coordination polymers based on 1,2,3,4-benzenetetracarboxylate and N-donor ligands: synthesis, topological structures, and photoluminescent properties.
    Zhang LP; Ma JF; Yang J; Pang YY; Ma JC
    Inorg Chem; 2010 Feb; 49(4):1535-50. PubMed ID: 20095627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serendipity and design in the generation of new coordination polymers: an extensive series of highly symmetrical guanidinium-templated, carbonate-based networks with the sodalite topology.
    Abrahams BF; Hawley A; Haywood MG; Hudson TA; Robson R; Slizys DA
    J Am Chem Soc; 2004 Mar; 126(9):2894-904. PubMed ID: 14995207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diruthenium tetracarbonate trianion, [Ru(II/III)(2)(O(2)CO)(4)](3-), based molecule-based magnets: three-dimensional network structure and two-dimensional magnetic ordering.
    Kennon BS; Her JH; Stephens PW; Miller JS
    Inorg Chem; 2009 Jul; 48(13):6117-23. PubMed ID: 19459667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination algorithms control molecular architecture: [CuI4(L2)4]4+ grid complex versus [MII2(L2)2X4]y+ side-by-side complexes (M=Mn, Co, Ni, Zn; X=solvent or anion) and [FeII(L2)3][Cl3FeIIIOFeIIICl3].
    Lan Y; Kennepohl DK; Moubaraki B; Murray KS; Cashion JD; Jameson GB; Brooker S
    Chemistry; 2003 Aug; 9(16):3772-84. PubMed ID: 12916101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formate--the analogue of azide: structural and magnetic properties of M(HCOO)2(4,4'-bpy).nH2O (M = Mn, Co, Ni; n = 0, 5).
    Wang XY; Wei HY; Wang ZM; Chen ZD; Gao S
    Inorg Chem; 2005 Feb; 44(3):572-83. PubMed ID: 15679387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.