These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 21042651)
1. Seasonal changes in antifreeze protein gene transcription and water content of beetle Microdera punctipennis (Coleoptera, Tenebrionidae) from Gurbantonggut desert in Central Asia. Hou F; Ma J; Liu X; Wang Y; Liu XN; Zhang FC Cryo Letters; 2010; 31(5):359-70. PubMed ID: 21042651 [TBL] [Abstract][Full Text] [Related]
2. A novel function - thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis. Qiu L; Mao X; Hou F; Ma J Cryobiology; 2013 Feb; 66(1):60-8. PubMed ID: 23187046 [TBL] [Abstract][Full Text] [Related]
3. Cryoprotective effect of an insect antifreeze protein MpAFP 698 and its mutants from the desert beetle Microdera punctipennis. Jiang M; Ma J; Qiu LM Cryo Letters; 2011; 32(5):436-46. PubMed ID: 22020466 [TBL] [Abstract][Full Text] [Related]
4. Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects. Ma J; Wang J; Mao XF; Wang Y Cryo Letters; 2012; 33(5):337-48. PubMed ID: 23224367 [TBL] [Abstract][Full Text] [Related]
5. Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Ragium mordax (Coleoptera: Cerambycidae). Wilkens C; Ramløv H Cryo Letters; 2008; 29(4):293-300. PubMed ID: 19137192 [TBL] [Abstract][Full Text] [Related]
6. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis. Li J; Ma W; Ma J Cryo Letters; 2016; 37(1):10-8. PubMed ID: 26964020 [TBL] [Abstract][Full Text] [Related]
7. Thermal stability properties of an antifreeze protein from the desert beetle Microdera punctipennis. Qiu LM; Ma J; Wang J; Zhang FC; Wang Y Cryobiology; 2010 Apr; 60(2):192-7. PubMed ID: 19895800 [TBL] [Abstract][Full Text] [Related]
8. Adaptation of the egg of the desert beetle, Microdera punctipennis (Coleoptera: Tenebrionidae), to arid environment. Wang Y; Shi M; Hou X; Meng S; Zhang F; Ma J J Insect Sci; 2014; 14():. PubMed ID: 25525108 [TBL] [Abstract][Full Text] [Related]
9. Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli. Qiu L; Wang Y; Wang J; Zhang F; Ma J Mol Biol Rep; 2010 Apr; 37(4):1725-32. PubMed ID: 19562508 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of the transcriptome of the overwintering desert beetle Microdera punctipennis. Tusong K; Guo X; Meng S; Liu X; Ma J Cryobiology; 2017 Oct; 78():80-89. PubMed ID: 28778690 [TBL] [Abstract][Full Text] [Related]
11. [Yeast expression and application of an antifreeze protein from the desert beetle Microdera punctipennis]. Meng S; Cai W; Ma J Sheng Wu Gong Cheng Xue Bao; 2015 Aug; 31(8):1255-65. PubMed ID: 26762047 [TBL] [Abstract][Full Text] [Related]
12. Heterothermy of free-living Arabian sand gazelles (Gazella subgutturosa marica) in a desert environment. Ostrowski S; Williams JB J Exp Biol; 2006 Apr; 209(Pt 8):1421-9. PubMed ID: 16574802 [TBL] [Abstract][Full Text] [Related]
13. Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Williams JB; Ruehl NC; Lee RE J Exp Biol; 2004 Dec; 207(Pt 25):4407-14. PubMed ID: 15557026 [TBL] [Abstract][Full Text] [Related]
14. Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria. Nicolai A; Vernon P; Lee M; Ansart A; Charrier M Cryobiology; 2005 Feb; 50(1):48-57. PubMed ID: 15710369 [TBL] [Abstract][Full Text] [Related]
16. Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Sinclair BJ; Terblanche JS; Scott MB; Blatch GL; Jaco Klok C; Chown SL J Insect Physiol; 2006 Jan; 52(1):29-50. PubMed ID: 16246360 [TBL] [Abstract][Full Text] [Related]
17. Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Drosophila melanogaster. Lin X; O'Tousa JE; Duman JG J Insect Physiol; 2010 Apr; 56(4):341-9. PubMed ID: 19931275 [TBL] [Abstract][Full Text] [Related]
18. Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Ansart A; Vernon P; Daguzan J Cryobiology; 2001 Jun; 42(4):266-73. PubMed ID: 11748935 [TBL] [Abstract][Full Text] [Related]
19. Variations in macromolecular antifreeze levels in larvae of the darkling beetle, Meracantha contracta. Duman JG J Exp Zool; 1977 Jul; 201(1):85-92. PubMed ID: 886298 [TBL] [Abstract][Full Text] [Related]
20. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Soudi Sh; Moharramipour S Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]