BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21042964)

  • 1. Tracking nanoparticles in three-dimensional tissue-engineered models using confocal laser scanning microscopy.
    Hearnden V; MacNeil S; Battaglia G
    Methods Mol Biol; 2011; 695():41-51. PubMed ID: 21042964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying anisotropic solute transport in protein crystals using 3-D laser scanning confocal microscopy visualization.
    Cvetkovic A; Straathof AJ; Hanlon DN; van der Zwaag S; Krishna R; van der Wielen LA
    Biotechnol Bioeng; 2004 May; 86(4):389-98. PubMed ID: 15112291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualisation of the uptake of two model xenobiotics into bean leaves by confocal laser scanning microscopy: diffusion pathways and implication in phloem translocation.
    Liu Z; Gaskin RE
    Pest Manag Sci; 2004 May; 60(5):434-9. PubMed ID: 15154509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FSiNPs mediated improved double immunofluorescence staining for gastric cancer cells imaging.
    He X; Ge J; Wang K; Tan W; Shi H; He C
    Talanta; 2008 Sep; 76(5):1199-206. PubMed ID: 18761178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles.
    Idris NM; Li Z; Ye L; Sim EK; Mahendran R; Ho PC; Zhang Y
    Biomaterials; 2009 Oct; 30(28):5104-13. PubMed ID: 19539368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal imaging protocols for live/dead staining in three-dimensional carriers.
    Gantenbein-Ritter B; Sprecher CM; Chan S; Illien-Jünger S; Grad S
    Methods Mol Biol; 2011; 740():127-40. PubMed ID: 21468974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures.
    Engelmayr GC; Papworth GD; Watkins SC; Mayer JE; Sacks MS
    J Biomech; 2006; 39(10):1819-31. PubMed ID: 16043186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy.
    Dickie R; Bachoo RM; Rupnick MA; Dallabrida SM; Deloid GM; Lai J; Depinho RA; Rogers RA
    Microvasc Res; 2006; 72(1-2):20-6. PubMed ID: 16806289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
    Gröner N; Capoulade J; Cremer C; Wachsmuth M
    Opt Express; 2010 Sep; 18(20):21225-37. PubMed ID: 20941019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering.
    Guehring T; Urban JP; Cui Z; Tirlapur UK
    Microsc Res Tech; 2008 Apr; 71(4):298-304. PubMed ID: 18189326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton autofluorescence imaging of intratissue elastic fibers.
    König K; Schenke-Layland K; Riemann I; Stock UA
    Biomaterials; 2005 Feb; 26(5):495-500. PubMed ID: 15276357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications.
    Furrer P; Gurny R
    Eur J Pharm Biopharm; 2010 Jan; 74(1):33-40. PubMed ID: 19755157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal laser scanning microscopy vs 3-dimensional histologic imaging in basal cell carcinoma.
    Ziefle S; Schüle D; Breuninger H; Schippert W; Moehrle M
    Arch Dermatol; 2010 Aug; 146(8):843-7. PubMed ID: 20713814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO(4) to quench autofluorescence in the rat inner ear.
    Zhang Y; Zhang W; Johnston AH; Newman TA; Pyykkö I; Zou J
    Hear Res; 2010 Oct; 269(1-2):1-11. PubMed ID: 20659540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans.
    Michels J
    J Microsc; 2007 Jul; 227(Pt 1):1-7. PubMed ID: 17635653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.