These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21042980)

  • 1. 3D structuring of biocompatible and biodegradable polymers via stereolithography.
    Gill AA; Claeyssens F
    Methods Mol Biol; 2011; 695():309-21. PubMed ID: 21042980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization.
    Engelhardt S; Hoch E; Borchers K; Meyer W; Krüger H; Tovar GE; Gillner A
    Biofabrication; 2011 Jun; 3(2):025003. PubMed ID: 21562366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers.
    Li C; Tang Y; Armes SP; Morris CJ; Rose SF; Lloyd AW; Lewis AL
    Biomacromolecules; 2005; 6(2):994-9. PubMed ID: 15762670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization.
    Pavlov MP; Mano JF; Neves NM; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):776-84. PubMed ID: 15468271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.
    Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ
    J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers.
    Tai H; Popov VK; Shakesheff KM; Howdle SM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):516-21. PubMed ID: 17511642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Reticulate polymers used in obtaining new dental materials].
    Budală DG; Vlad CD; Forna NC
    Rev Med Chir Soc Med Nat Iasi; 2010; 114(4):1194-7. PubMed ID: 21500479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds.
    Christenson EM; Soofi W; Holm JL; Cameron NR; Mikos AG
    Biomacromolecules; 2007 Dec; 8(12):3806-14. PubMed ID: 17979240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization.
    Srivastava RK; Albertsson AC
    Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic polymers for cell cultivation, differentiation, and tissue engineering.
    Löber A; Verch A; Schlemmer B; Höfer S; Frerich B; Buchmeiser MR
    Angew Chem Int Ed Engl; 2008; 47(47):9138-41. PubMed ID: 18925602
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization.
    Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V
    Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for fabrication of nanoscale topography for tissue engineering scaffolds.
    Norman JJ; Desai TA
    Ann Biomed Eng; 2006 Jan; 34(1):89-101. PubMed ID: 16525765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers.
    Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R
    J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels.
    Madsen J; Armes SP; Bertal K; Lomas H; Macneil S; Lewis AL
    Biomacromolecules; 2008 Aug; 9(8):2265-75. PubMed ID: 18598077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.