BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21042981)

  • 1. Alvetex®: polystyrene scaffold technology for routine three dimensional cell culture.
    Knight E; Murray B; Carnachan R; Przyborski S
    Methods Mol Biol; 2011; 695():323-40. PubMed ID: 21042981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel cell culture device enabling three-dimensional cell growth and improved cell function.
    Bokhari M; Carnachan RJ; Cameron NR; Przyborski SA
    Biochem Biophys Res Commun; 2007 Mar; 354(4):1095-100. PubMed ID: 17276400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The three-dimensional nanofiber scaffold culture condition improves viability and function of islets.
    Zhao M; Song C; Zhang W; Hou Y; Huang R; Song Y; Xie W; Shi Y; Song C
    J Biomed Mater Res A; 2010 Sep; 94(3):667-72. PubMed ID: 20336763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
    Baker SC; Atkin N; Gunning PA; Granville N; Wilson K; Wilson D; Southgate J
    Biomaterials; 2006 Jun; 27(16):3136-46. PubMed ID: 16473404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D polymer scaffold arrays.
    Simon CG; Yang Y; Dorsey SM; Ramalingam M; Chatterjee K
    Methods Mol Biol; 2011; 671():161-74. PubMed ID: 20967629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses.
    Maltman DJ; Przyborski SA
    Biochem Soc Trans; 2010 Aug; 38(4):1072-5. PubMed ID: 20659006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.
    Jones GL; Walton R; Czernuszka J; Griffiths SL; El Haj AJ; Cartmell SH
    J Biomed Mater Res A; 2010 Sep; 94(4):1244-50. PubMed ID: 20694991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverted colloidal crystals as three-dimensional cell scaffolds.
    Kotov NA; Liu Y; Wang S; Cumming C; Eghtedari M; Vargas G; Motamedi M; Nichols J; Cortiella J
    Langmuir; 2004 Sep; 20(19):7887-92. PubMed ID: 15350047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen.
    Dhiman HK; Ray AR; Panda AK
    Biomaterials; 2005 Mar; 26(9):979-86. PubMed ID: 15369686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocytes Grown in Alvetex(®) Three Dimensional Scaffolds Retain a Non-reactive Phenotype.
    Ugbode CI; Hirst WD; Rattray M
    Neurochem Res; 2016 Aug; 41(8):1857-67. PubMed ID: 27099962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells.
    Wang H; van Blitterswijk CA
    Biomaterials; 2010 May; 31(15):4322-9. PubMed ID: 20199809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture.
    Wang L; Hu YY; Wang Z; Li X; Li DC; Lu BH; Xu SF
    J Biomed Mater Res A; 2009 Oct; 91(1):102-13. PubMed ID: 18767058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds.
    Dar A; Shachar M; Leor J; Cohen S
    Biotechnol Bioeng; 2002 Nov; 80(3):305-12. PubMed ID: 12226863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Porous Polystyrene Scaffolds to Bioengineer Human Epithelial Tissues In Vitro.
    Costello L; Darling N; Freer M; Bradbury S; Mobbs C; Przyborski S
    Methods Mol Biol; 2021; 2273():279-296. PubMed ID: 33604861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch.
    Huang CC; Liao CK; Yang MJ; Chen CH; Hwang SM; Hung YW; Chang Y; Sung HW
    Biomaterials; 2010 Aug; 31(24):6218-27. PubMed ID: 20537702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of mouse embryonic stem cells in self-assembling peptide scaffolds.
    Marí-Buyé N; Semino CE
    Methods Mol Biol; 2011; 690():217-37. PubMed ID: 21042996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.