These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 21043107)

  • 1. [Aluminum-tolerant characteristics of different Chamaecrista genotypes].
    Zheng XL; Ye HL; Xu GZ
    Ying Yong Sheng Tai Xue Bao; 2010 Aug; 21(8):1998-2003. PubMed ID: 21043107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correlations of shoot and root growth and its role in screening for aluminum tolerance in wheat].
    Lin X; Zhang Y; Luo A
    Ying Yong Sheng Tai Xue Bao; 2002 Jun; 13(6):766-8. PubMed ID: 12216413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for initially selecting Al-tolerant rice varieties based on the charge characteristics of their roots.
    Lu HL; Dong G; Hua H; Zhao WR; Li JY; Xu RK
    Ecotoxicol Environ Saf; 2020 Jan; 187():109813. PubMed ID: 31644989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance.].
    Yang CT; Zhang YQ; Ma XX; Chen W; Dong L; Zhang C; Lu ZJ
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2997-3007. PubMed ID: 30411576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Physiological characteristics of rice seedlings roots under aluminum stress].
    Xie GS; Shi RH; Pang ZW; Cai KT
    Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1698-704. PubMed ID: 19899473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Screening methodology for rice (Oryza sativa) genotypes with high phosphorus use efficiency at their seedling stage].
    Guo Y; Lin W; Shi Q; Liang Y; Chen F; He H; Liang K
    Ying Yong Sheng Tai Xue Bao; 2002 Dec; 13(12):1587-91. PubMed ID: 12682961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential speed of activation in antioxidant system in three oat genotypes.
    Pereira LB; Cargnelutti D; Rossato LV; Gonçalves JF; Tabaldi LA; Schmatz R; Vieira JM; Dressler V; Nicoloso FT; Federizzi LC; Morsch VM; Schetinger MR
    J Inorg Biochem; 2013 Nov; 128():202-7. PubMed ID: 23998202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An approach to the screening index for low phosphorus tolerant rice genotype].
    Li Y; Luo A; Wang W; Yang C; Yang X
    Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):119-24. PubMed ID: 15852970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Al exposure increases proline levels by different pathways in an Al-sensitive and an Al-tolerant rye genotype.
    de Sousa A; AbdElgawad H; Fidalgo F; Teixeira J; Matos M; Hamed BA; Selim S; Hozzein WN; Beemster GTS; Asard H
    Sci Rep; 2020 Oct; 10(1):16401. PubMed ID: 33009431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping quantitative trait loci associated with aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max).
    Qi B; Korir P; Zhao T; Yu D; Chen S; Gai J
    J Integr Plant Biol; 2008 Sep; 50(9):1089-95. PubMed ID: 18844777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of additive genetic variance for fitness in a population of partridge pea in two field sites.
    Sheth SN; Kulbaba MW; Pain RE; Shaw RG
    Evolution; 2018 Nov; 72(11):2537-2545. PubMed ID: 30267420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Venturing beyond beans and peas: what can we learn from Chamaecrista?
    Singer SR; Maki SL; Farmer AD; Ilut D; May GD; Cannon SB; Doyle JJ
    Plant Physiol; 2009 Nov; 151(3):1041-7. PubMed ID: 19755538
    [No Abstract]   [Full Text] [Related]  

  • 13. [Low-phosphorus tolerance and related physiological mechanism of Xieqingzao B//Xieqingzao B/Dongxiang wild rice BC1F9 populations].
    Chen XR; Chen M; He HH; Zhu CL; Peng XS; He XP; Fu JR; Ouyang LJ
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1169-74. PubMed ID: 21812290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses and tolerance of plant shoot to aluminum toxicity.
    Chen LS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):143-55. PubMed ID: 16622312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the role of calmodulin in Al toxicity in maize.
    Jorge RA; Menossi M; Arruda P
    Phytochemistry; 2001 Oct; 58(3):415-22. PubMed ID: 11557073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant.
    Kulbaba MW; Sheth SN; Pain RE; Eckhart VM; Shaw RG
    Evolution; 2019 Sep; 73(9):1746-1758. PubMed ID: 31432512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].
    Gao JM; Xia BX; Yuan QH; Luo F; Han Y; Gui Z; Pei ZY; Sun SJ
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1303-10. PubMed ID: 22919841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the capacity of Chamaecrista fasciculata for adaptation to change in precipitation.
    Peschel AR; Boehm EL; Shaw RG
    Evolution; 2021 Jan; 75(1):73-85. PubMed ID: 33215695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of maize hybrids for tolerance to aluminum in minimal solution.
    Coelho CJ; Molin D; Wood Joris HA; Caires EF; Gardingo JR; Matiello RR
    Genet Mol Res; 2015 Jan; 14(1):134-44. PubMed ID: 25729944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination.
    Kikui S; Sasaki T; Maekawa M; Miyao A; Hirochika H; Matsumoto H; Yamamoto Y
    J Inorg Biochem; 2005 Sep; 99(9):1837-44. PubMed ID: 16095709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.