These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21043417)

  • 1. Amplification of electro-osmotic flows by wall slippage: direct measurements on OTS-surfaces.
    Audry MC; Piednoir A; Joseph P; Charlaix E
    Faraday Discuss; 2010; 146():113-24; discussion 195-215, 395-403. PubMed ID: 21043417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces.
    Bouzigues CI; Tabeling P; Bocquet L
    Phys Rev Lett; 2008 Sep; 101(11):114503. PubMed ID: 18851287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-osmotic flow over a charged superhydrophobic surface.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
    Kim D; Darve E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects.
    Bonaccurso E; Kappl M; Butt HJ
    Phys Rev Lett; 2002 Feb; 88(7):076103. PubMed ID: 11863917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics.
    Joly L; Ybert C; Trizac E; Bocquet L
    J Chem Phys; 2006 Nov; 125(20):204716. PubMed ID: 17144732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-osmotic flow in hydrophobic nanochannels.
    Silkina EF; Asmolov ES; Vinogradova OI
    Phys Chem Chem Phys; 2019 Oct; 21(41):23036-23043. PubMed ID: 31599900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamics near hydrophobic surfaces.
    Maduar SR; Belyaev AV; Lobaskin V; Vinogradova OI
    Phys Rev Lett; 2015 Mar; 114(11):118301. PubMed ID: 25839314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetics on superhydrophobic surfaces.
    Papadopoulos P; Deng X; Vollmer D; Butt HJ
    J Phys Condens Matter; 2012 Nov; 24(46):464110. PubMed ID: 23113983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.
    Zhao C; Yang C
    Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes.
    Mouterde T; Bocquet L
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Electroviscous Effect for Flow of Micropolar Fluids in a Nanochannel with Overlapping Electric Double Layers at High Zeta Potential.
    Banerjee D; Pati S; Biswas P
    Langmuir; 2024 Oct; 40(40):21128-21138. PubMed ID: 39344783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction.
    Kim YW; Netz RR
    J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-osmosis on anisotropic superhydrophobic surfaces.
    Belyaev AV; Vinogradova OI
    Phys Rev Lett; 2011 Aug; 107(9):098301. PubMed ID: 21929273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDL Induced Electro-magnetized Modified Hybrid Nano-blood Circulation in an Endoscopic Fatty Charged Arterial Indented Tract.
    Karmakar P; Das S
    Cardiovasc Eng Technol; 2024 Apr; 15(2):171-198. PubMed ID: 38148470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials.
    Bilichenko M; Iannuzzi M; Tocci G
    ACS Nano; 2024 Sep; 18(35):24118-24127. PubMed ID: 39172927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.