These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21043418)

  • 1. Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures.
    Lapierre F; Brunet P; Coffinier Y; Thomy V; Blossey R; Boukherroub R
    Faraday Discuss; 2010; 146():125-139; discussion 195-215, 395-403. PubMed ID: 21043418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme resistance of superhydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test.
    Brunet P; Lapierre F; Thomy V; Coffinier Y; Boukherroub R
    Langmuir; 2008 Oct; 24(19):11203-8. PubMed ID: 18729486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible electrowetting on superhydrophobic double-nanotextured surfaces.
    Lapierre F; Thomy V; Coffinier Y; Blossey R; Boukherroub R
    Langmuir; 2009 Jun; 25(11):6551-8. PubMed ID: 19402607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-(de)wetting on superhydrophobic surfaces.
    Lapierre F; Coffinier Y; Boukherroub R; Thomy V
    Langmuir; 2013 Nov; 29(44):13346-51. PubMed ID: 24088024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching.
    He Y; Jiang C; Yin H; Chen J; Yuan W
    J Colloid Interface Sci; 2011 Dec; 364(1):219-29. PubMed ID: 21889158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer.
    Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic surfaces for extreme environmental conditions.
    Lambley H; Schutzius TM; Poulikakos D
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27188-27194. PubMed ID: 33077603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.
    Mumm F; van Helvoort AT; Sikorski P
    ACS Nano; 2009 Sep; 3(9):2647-52. PubMed ID: 19681579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-low voltage electrowetting using graphite surfaces.
    Lomax DJ; Kant P; Williams AT; Patten HV; Zou Y; Juel A; Dryfe RA
    Soft Matter; 2016 Oct; 12(42):8798-8804. PubMed ID: 27722442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of Electrowetting-Induced Droplet Detachment and Jumping over Topographically Micro-Structured Surfaces.
    Sourais AG; Papathanasiou AG
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Droplet Breakup Dynamics on Micropillared Superhydrophobic Surfaces.
    Zhang R; Hao P; Zhang X; Niu F; He F
    Langmuir; 2018 Jul; 34(26):7942-7950. PubMed ID: 29889533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures.
    Kuan WF; Chen LJ
    Nanotechnology; 2009 Jan; 20(3):035605. PubMed ID: 19417300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars.
    Huovinen E; Takkunen L; Korpela T; Suvanto M; Pakkanen TT; Pakkanen TA
    Langmuir; 2014 Feb; 30(5):1435-43. PubMed ID: 24483340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature.
    Maitra T; Tiwari MK; Antonini C; Schoch P; Jung S; Eberle P; Poulikakos D
    Nano Lett; 2014 Jan; 14(1):172-82. PubMed ID: 24320719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform.
    Agrawal P; Bachus KJ; Carriere G; Grouse P; Oleschuk RD
    Anal Bioanal Chem; 2019 Aug; 411(21):5393-5403. PubMed ID: 30291386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.