These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21043421)

  • 1. Dynamic mean field theory of condensation and evaporation processes for fluids in porous materials: application to partial drying and drying.
    Edison JR; Monson PA
    Faraday Discuss; 2010; 146():167-84; discussion 195-215, 395-403. PubMed ID: 21043421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: higher order theory based on the Bethe-Peierls and path probability method approximations.
    Edison JR; Monson PA
    J Chem Phys; 2014 Jul; 141(2):024706. PubMed ID: 25028037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
    Edison JR; Monson PA
    Langmuir; 2013 Nov; 29(45):13808-20. PubMed ID: 24102541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.
    Edison JR; Monson PA
    J Chem Phys; 2013 Jun; 138(23):234709. PubMed ID: 23802978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Bethe-Peierls approximation to a lattice-gas model of adsorption on mesoporous materials.
    Salazar R; Gelb LD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041502. PubMed ID: 15903672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels.
    Naumov S; Valiullin R; Kärger J; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031607. PubMed ID: 19905123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of dynamic mean field theory and grand canonical molecular dynamics for the dynamics of pore filling and capillary condensation of fluids in mesopores.
    Rathi A; Kikkinides ES; Ford DM; Monson PA
    J Chem Phys; 2018 Jul; 149(1):014703. PubMed ID: 29981543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption, intrusion and freezing in porous silica: the view from the nanoscale.
    Coasne B; Galarneau A; Pellenq RJ; Di Renzo F
    Chem Soc Rev; 2013 May; 42(9):4141-71. PubMed ID: 23348418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the dynamic mean field theory to fluid transport in slit pores.
    Yuan T; Farmahini AH; Sarkisov L
    J Chem Phys; 2021 Aug; 155(7):074702. PubMed ID: 34418941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Statistical Theory for Constructing Sorption Isotherms in Mesoporous Structures Represented by Bethe Lattices.
    Kikkinides ES; Valiullin R
    J Phys Chem A; 2023 Oct; 127(41):8734-8750. PubMed ID: 37793009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-dynamics simulation of evaporation processes of fluid bridges confined in slitlike pores.
    Bucior K; Yelash L; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031604. PubMed ID: 19391951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the influence of side stream and ink bottle structures on adsorption/desorption dynamics of fluids in long pores.
    Schneider D; Valiullin R; Monson PA
    Langmuir; 2015 Jan; 31(1):188-98. PubMed ID: 25486536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and phase behavior of water-like fluid models with square-well attraction and site-site association in slit-like pores: Density functional approach.
    Trejos VM; Sokołowski S; Pizio O
    J Chem Phys; 2018 Oct; 149(13):134701. PubMed ID: 30292229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation in hydrophobic cylindrical pores: a lattice model.
    Saugey A; Bocquet L; Barrat JL
    J Phys Chem B; 2005 Apr; 109(14):6520-6. PubMed ID: 16851732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling mercury porosimetry using statistical mechanics.
    Porcheron F; Monson PA; Thommes M
    Langmuir; 2004 Jul; 20(15):6482-9. PubMed ID: 15248740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic aspects of mercury porosimetry: a lattice model study.
    Porcheron F; Monson PA
    Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted density functional theory for simple fluids: supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore.
    Sweatman MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031102. PubMed ID: 11308625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.