BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21043434)

  • 1. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
    Gaborski TR; Snyder JL; Striemer CC; Fang DZ; Hoffman M; Fauchet PM; McGrath JL
    ACS Nano; 2010 Nov; 4(11):6973-81. PubMed ID: 21043434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
    Agrawal AA; Nehilla BJ; Reisig KV; Gaborski TR; Fang DZ; Striemer CC; Fauchet PM; McGrath JL
    Biomaterials; 2010 Jul; 31(20):5408-17. PubMed ID: 20398927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
    DesOrmeaux JP; Winans JD; Wayson SE; Gaborski TR; Khire TS; Striemer CC; McGrath JL
    Nanoscale; 2014 Sep; 6(18):10798-805. PubMed ID: 25105590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
    Qi C; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2015 Feb; 26(5):055706. PubMed ID: 25590751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.
    Snyder JL; Getpreecharsawas J; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; Borkholder DA; McGrath JL
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18425-30. PubMed ID: 24167263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes.
    Snyder JL; Clark A; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; McGrath JL
    J Memb Sci; 2011 Mar; 369(1-2):119-129. PubMed ID: 21297879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size tuning of luminescent silicon nanoparticles with meso-porous silicon membranes.
    Serdiuk T; Lysenko V; Alekseev S; Skryshevsky VA
    J Colloid Interface Sci; 2011 Dec; 364(1):65-70. PubMed ID: 21890146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin silicon membranes for wearable dialysis.
    Johnson DG; Khire TS; Lyubarskaya YL; Smith KJ; Desormeaux JP; Taylor JG; Gaborski TR; Shestopalov AA; Striemer CC; McGrath JL
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):508-15. PubMed ID: 24206603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial vacuolization induced by highly permeable silicon membranes.
    Nehilla BJ; Nataraj N; Gaborski TR; McGrath JL
    Acta Biomater; 2014 Nov; 10(11):4670-4677. PubMed ID: 25072618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes.
    Ling S; Jin K; Kaplan DL; Buehler MJ
    Nano Lett; 2016 Jun; 16(6):3795-800. PubMed ID: 27076389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic and non-ballistic gas flow through ultrathin nanopores.
    Kavalenka MN; Striemer CC; Fang DZ; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2012 Apr; 23(14):145706. PubMed ID: 22433182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles.
    Lie LH; Patole SN; Pike AR; Ryder LC; Connolly BA; Ward AD; Tuite EM; Houlton A; Horrocks BR
    Faraday Discuss; 2004; 125():235-49; discussion 293-309. PubMed ID: 14750674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structure-permeability relationship of ultrathin nanoporous silicon membrane: a comparison with the nuclear envelope.
    Kim E; Xiong H; Striemer CC; Fang DZ; Fauchet PM; McGrath JL; Amemiya S
    J Am Chem Soc; 2008 Apr; 130(13):4230-1. PubMed ID: 18324815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microporous Matrimid/PIM-1 Thin Film Composite Membranes with Narrow Pore Size Distribution used for Molecular Separation in Organic Solvents.
    Li J; Feng W; Zhang M; Wang X; Fang C; Wang J; Zhang L; Zhu L
    Macromol Rapid Commun; 2023 Mar; 44(6):e2200826. PubMed ID: 36414542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore size control of ultrathin silicon membranes by rapid thermal carbonization.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nano Lett; 2010 Oct; 10(10):3904-8. PubMed ID: 20839831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
    Feinberg BJ; Hsiao JC; Park J; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2018 May; 517():176-181. PubMed ID: 29425954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile ultrathin nanoporous silicon nitride membranes.
    Vlassiouk I; Apel PY; Dmitriev SN; Healy K; Siwy ZS
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21039-44. PubMed ID: 19948951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast permeation of water through protein-based membranes.
    Peng X; Jin J; Nakamura Y; Ohno T; Ichinose I
    Nat Nanotechnol; 2009 Jun; 4(6):353-7. PubMed ID: 19498395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.