These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21044397)

  • 1. Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility.
    Lippman Bell JJ; Lordkipanidze T; Cobb N; Dunaevsky A
    Neuron Glia Biol; 2010 Aug; 6(3):193-200. PubMed ID: 21044397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis.
    Lippman JJ; Lordkipanidze T; Buell ME; Yoon SO; Dunaevsky A
    Glia; 2008 Oct; 56(13):1463-77. PubMed ID: 18615636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serial changes in granuloprival cerebellar cultures after transplantation with granule cells and glia: a timed ultrastructural study.
    Seil FJ
    Neuroscience; 1997 Apr; 77(3):695-711. PubMed ID: 9070746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells.
    Bosch C; Masachs N; Exposito-Alonso D; Martínez A; Teixeira CM; Fernaud I; Pujadas L; Ulloa F; Comella JX; DeFelipe J; Merchán-Pérez A; Soriano E
    Cereb Cortex; 2016 Oct; 26(11):4282-4298. PubMed ID: 27624722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses.
    Riquelme R; Miralles CP; De Blas AL
    J Neurosci; 2002 Dec; 22(24):10720-30. PubMed ID: 12486165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells.
    Yamada K; Fukaya M; Shibata T; Kurihara H; Tanaka K; Inoue Y; Watanabe M
    J Comp Neurol; 2000 Feb; 418(1):106-20. PubMed ID: 10701759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of organotypic cultures of mouse cerebellum exposed to cytosine arabinoside: a timed ultrastructural study.
    Seil FJ; Herndon RM; Tiekotter KL; Blank NK
    J Comp Neurol; 1991 Nov; 313(2):193-212. PubMed ID: 1765580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional analysis of dendritic spines. III. Glial sheath.
    Spacek J
    Anat Embryol (Berl); 1985; 171(2):245-52. PubMed ID: 3985373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia.
    Iino M; Goto K; Kakegawa W; Okado H; Sudo M; Ishiuchi S; Miwa A; Takayasu Y; Saito I; Tsuzuki K; Ozawa S
    Science; 2001 May; 292(5518):926-9. PubMed ID: 11340205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro.
    Nwabuisi-Heath E; Rebeck GW; Ladu MJ; Yu C
    ASN Neuro; 2014 Jan; 6(1):e00134. PubMed ID: 24328732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons.
    Majumdar D; Nebhan CA; Hu L; Anderson B; Webb DJ
    Mol Cell Neurosci; 2011 Mar; 46(3):633-44. PubMed ID: 21236345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development.
    Douyard J; Shen L; Huganir RL; Rubio ME
    J Comp Neurol; 2007 May; 502(1):141-56. PubMed ID: 17335044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I; Skibo G; Muller D; Nikonenko I
    Hippocampus; 2009 Aug; 19(8):753-62. PubMed ID: 19156853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glutamate receptor 2 subunit controls post-synaptic density complexity and spine shape in the dentate gyrus.
    Medvedev NI; Rodríguez-Arellano JJ; Popov VI; Davies HA; Tigaret CM; Schoepfer R; Stewart MG
    Eur J Neurosci; 2008 Jan; 27(2):315-25. PubMed ID: 18215230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization.
    Wang SH; Celic I; Choi SY; Riccomagno M; Wang Q; Sun LO; Mitchell SP; Vasioukhin V; Huganir RL; Kolodkin AL
    J Neurosci; 2014 Sep; 34(38):12745-61. PubMed ID: 25232112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.
    Efimova N; Korobova F; Stankewich MC; Moberly AH; Stolz DB; Wang J; Kashina A; Ma M; Svitkina T
    J Neurosci; 2017 Jul; 37(27):6442-6459. PubMed ID: 28576936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDC42EP4, a perisynaptic scaffold protein in Bergmann glia, is required for glutamatergic tripartite synapse configuration.
    Ageta-Ishihara N; Konno K; Yamazaki M; Abe M; Sakimura K; Watanabe M; Kinoshita M
    Neurochem Int; 2018 Oct; 119():190-198. PubMed ID: 29330091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane specializations of dentritic spines and glia in the weaver mouse cerebellum: a freeze-fracture study.
    Hanna RB; Hirano A; Pappas GD
    J Cell Biol; 1976 Mar; 68(3):403-10. PubMed ID: 1025152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation.
    Saarikangas J; Kourdougli N; Senju Y; Chazal G; Segerstråle M; Minkeviciene R; Kuurne J; Mattila PK; Garrett L; Hölter SM; Becker L; Racz I; Hans W; Klopstock T; Wurst W; Zimmer A; Fuchs H; Gailus-Durner V; Hrabě de Angelis M; von Ossowski L; Taira T; Lappalainen P; Rivera C; Hotulainen P
    Dev Cell; 2015 Jun; 33(6):644-59. PubMed ID: 26051541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.