BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21044575)

  • 1. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results.
    Calder S; O'Grady G; Cheng LK; Du P
    Ann Biomed Eng; 2018 Aug; 46(8):1183-1193. PubMed ID: 29704187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography.
    Calder S; O'Grady G; Cheng LK; Du P
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):868-875. PubMed ID: 31199250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified biophysical cell model for gastric slow wave entrainment simulation.
    Du P; Gao J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Anatomical Variations of the Stomach on Body-Surface Gastric Mapping Investigated Using a Large Population-Based Multiscale Simulation Approach.
    Ruenruaysab K; Calder S; Hayes T; Andrews C; OaGrady G; Gharibans A; Du P
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1369-1377. PubMed ID: 34587001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Theoretical Analysis of Electrogastrography (EGG) Signatures Associated With Gastric Dysrhythmias.
    Calder S; O'Grady G; Cheng LK; Peng Du
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1592-1601. PubMed ID: 28113227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
    O'Grady G; Du P; Egbuji JU; Lammers WJ; Wahab A; Pullan AJ; Cheng LK; Windsor JA
    Surg Endosc; 2009 Dec; 23(12):2842-8. PubMed ID: 19466491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical variations of the stomach effects on electrogastrography.
    Calder S; O'Grady G; Cheng LK; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4219-4222. PubMed ID: 29060828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastric slow wave rhythm identification using new approach based on noise-assisted multivariate empirical mode decomposition and Hilbert-Huang transform.
    Komorowski D; Mika B
    Neurogastroenterol Motil; 2021 Mar; 33(3):e13997. PubMed ID: 33043542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing.
    Sathar S; Trew ML; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive electrogastrography. Part 2. Human electrogastrogram.
    Atanassova E; Daskalov I; Dotsinsky I; Christov I; Atanassova A
    Arch Physiol Biochem; 1995 Aug; 103(4):436-41. PubMed ID: 8548479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.