These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21044593)

  • 1. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.
    Janosi L; Gorfe A
    Biophys J; 2010 Nov; 99(9):2957-66. PubMed ID: 21044593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of chain length and unsaturation on sphingomyelin bilayers.
    Niemelä PS; Hyvönen MT; Vattulainen I
    Biophys J; 2006 Feb; 90(3):851-63. PubMed ID: 16284257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing properties of sphingomyelin ceramide bilayers: a simulation study.
    Metcalf R; Pandit SA
    J Phys Chem B; 2012 Apr; 116(15):4500-9. PubMed ID: 22390271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine.
    Niemelä P; Hyvönen MT; Vattulainen I
    Biophys J; 2004 Nov; 87(5):2976-89. PubMed ID: 15315947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes.
    Yasuda T; Al Sazzad MA; Jäntti NZ; Pentikäinen OT; Slotte JP
    Biophys J; 2016 Jan; 110(2):431-440. PubMed ID: 26789766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-ordered phase formation in cholesterol/sphingomyelin bilayers: all-atom molecular dynamics simulations.
    Zidar J; Merzel F; Hodoscek M; Rebolj K; Sepcić K; Macek P; Janezic D
    J Phys Chem B; 2009 Dec; 113(48):15795-802. PubMed ID: 19929009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of sphingomyelin bilayers: a simulation study.
    Chiu SW; Vasudevan S; Jakobsson E; Mashl RJ; Scott HL
    Biophys J; 2003 Dec; 85(6):3624-35. PubMed ID: 14645055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of double bond geometry in sphingosine base on the antioxidant function of sphingomyelin.
    Subbaiah PV; Sircar D; Lankalapalli RS; Bittman R
    Arch Biochem Biophys; 2009 Jan; 481(1):72-9. PubMed ID: 18952047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study.
    Saeedimasine M; Montanino A; Kleiven S; Villa A
    Sci Rep; 2019 May; 9(1):8000. PubMed ID: 31142762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sphingomyelin headgroup size on interactions with ceramide.
    Artetxe I; Sergelius C; Kurita M; Yamaguchi S; Katsumura S; Slotte JP; Maula T
    Biophys J; 2013 Feb; 104(3):604-12. PubMed ID: 23442911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study.
    Mombelli E; Morris R; Taylor W; Fraternali F
    Biophys J; 2003 Mar; 84(3):1507-17. PubMed ID: 12609857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of monoglycerides and fatty acids on a ceramide bilayer.
    Akinshina A; Das C; Noro MG
    Phys Chem Chem Phys; 2016 Jul; 18(26):17446-60. PubMed ID: 27302426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study.
    Badhe Y; Gupta R; Rai B
    J Mol Model; 2019 Apr; 25(5):140. PubMed ID: 31041534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes.
    Maulik PR; Shipley GG
    Biophys J; 1995 Nov; 69(5):1909-16. PubMed ID: 8580334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature.
    Venable RM; Sodt AJ; Rogaski B; Rui H; Hatcher E; MacKerell AD; Pastor RW; Klauda JB
    Biophys J; 2014 Jul; 107(1):134-45. PubMed ID: 24988348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.
    Guyomarc'h F; Chen M; Et-Thakafy O; Zou S; Lopez C
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):949-958. PubMed ID: 28215536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers.
    García-Linares S; Palacios-Ortega J; Yasuda T; Åstrand M; Gavilanes JG; Martínez-del-Pozo Á; Slotte JP
    Biochim Biophys Acta; 2016 Jun; 1858(6):1189-95. PubMed ID: 26975250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer.
    Zaraiskaya T; Jeffrey KR
    Biophys J; 2005 Jun; 88(6):4017-31. PubMed ID: 15764671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.